Version 0.6b
May 22, 2001

NIST DASE PROTOTYPE IMPLEMENTATION

PAE IMPLEMENTATION GUIDE

NOTE: This document is considered a DRAFT version and may not be correct in all
aspects regarding the current NIST DASE Prototype Implementation. This document
is for informational purposes only and may not be redistributed. The final, up-to-
date version of this document will have a version number of 1.0 or higher.

1. INTRODUGCTIONttt e e e e et e e e e e e e e et e e et e e eaneenanaaes 1
P. DEFINITION OF TERMS......i oottt e et e a et e e et e e e et e e e e st e e e eeaaneees 1
.1 ACronymMs and ADDIEVIATIONSuuiiiieiiiiciiiiiiiiie e e ieeciti et e e e e s s sn et eeeeeesssnnteaeeeraaeeesannnsnbeeeeeeeeesareees 1
.2 T, 2

. APTIMPLEMENTATION MAPPINGS AND STATUS...... . iiiiieeeeeeieciiiiiannnannenns 3|
[B-1 Status Table GUIAEINEScooueiiiiiiiiieie et 3
| B.2 DASE APITMPIEMENTATION STATUSuuvuririiiiiiiiiiiii e 3
iy DEVELOPMENT ENVIRONMEN T .. ettt e e e e e e e naenneenaees 5
b. S S I =AY T =] 1T N 6
LN X [V TeS A T T 6

Z NIST DASE Development ENVITONMENT COM P ONEIITS ... oo eeeeaeeeseissesssseseseseeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 9
2.1 T O TUCTION .. . oot ec e e e cee e e ee e e annaeeeenaneeeeeanneeeeennneeeeenaneeeenansneeenanneeennnteeeenanneen 6

2.2 Overview 0of the STB SIMUIBTION........uiiiieiiiiii e s s ee e s s sss et e aessssrr e eeeeasasnnes /|

2.3 Hardware ADSIFaCtioON LaYer OVEIVIEWocueuuuieieiiieeeeiiiaeeeeiieeeetsseretaeeeennaeaeennseeeenaeerennas <]

2.4 DASE APT OVEIVIEWveeiiiie ittt ettt e e ettt e e e e s ettt teeasaaaba e eeteaeeeaaannrneeeeeannnnes 9

p. THE STB SIMULATIONt en e e eeans 10
S L e IV Tel eI 10
2 The Nalive CoAe COMPONENTS.......cuiiiiiiieiieiiiieeeieeeeseteetesseeeeasteeeeesateeetessneeeeessteeeeesnseeeeessneees 11
2.1 THE SIMUIATION CONITOT PTOOTAIN ... eeeeeeeiienerrreeeessssessnrnereeeesesasssssneeeeeesessssssseeeeeeesessssssseeeeeeeeees 11

2.2 Program ClOCK RETEreNCe MaANGGETcceviviieeeiiiieeeeieeeeeee e eae e eaeesteeeeesieeeeeseeeaeeanees 11
B.7.3 TTIE BITSTTEaIM P Al S Bl ... eeessereeeseeeeeeesoeneeesaneereesaeeseeessoseeesenseeessaseeeesareseeesaeseeesaseseeesaeeseeesseeeees 13

b. JAVA COMPONEITS ..veereseseooooosoooesoeseessineessensensenseseeeessesneensessinsensnsinsnsnsensensseeresnesseinsnrennenes T3|
£.3.1 The MaANAQEr CIASSEScccieeiiiiiiiiiiiee e e e iectttet et e e e e s sett et et e e e s e sst et e etaeessassntaeeeaaaeesanssnsraeeaaaeasanes 16
b.3.2 T S e A T T 16
RGN B 18 LIS FE ST 17

3.4 (O TS T 13

E able ManagemeNnT 1N TNE SIMUTATION ...eeoovwwereoerreeesoerreesaeeeeersareeeesmeeseeesmeeseeessmereeesmeeceeesns 18
4. E1e YO E T 19

£.4.2 Virtual Channel Table EXamPpPle ...t 21

E Data BroadCast MaNagEMENTcicuuuieeiiiiieeesiireesisireressssrreesasureeesssssreesansseeessssseeeesssseseesssseeeeses 23
SN R =Y o= Te [S A @ A Z=T Y =3 24

5.2 Simulation Management of Data BroatdCast...........c..uueuiuuiieiiiieeiiiieeeeieeeeeeeeeeeaeesaae e 2/

T T oo eoeeeeeeeoeeeeeersseeeeeserereerenerreerennereeeennnreeeeaeeeeetaneeeetaseereetenneeteeennerteeeaeereeeaneeeeesereerereeeeeearees Z8

.1 HATOWATE SIMUTATON oo oo oo oo oo 78|
£.6.2 MPEGDECOUEIMABNAGETcccuevveieeeeeeeieiiutteeeestaeaiaaiustasreeseesiassssteseraseessaasssssrereaeessmnmsnssesraaeessnnns 28

.0.3 PCRManNagerPUllSOUICESTIEAIMcccuiiiiiiiiiei ettt e e s e e et e et s e e e aeeeenennns 29

5.0.4 DN S o N o ST, 29
B.6.5 HaNAIET ... it eieeeeeceeeeeceeeeieeeeeeeeeeieeseteeeeaeseeenseeseeeseenenrennsesesreesnreseneeennenenees 29
b.6.6 DAVIC CONTIOIS ...ttt e e e ettt et e e et ettt et taeeaaaasteteeeaaaesssaneeseeeaaasesaannreseaaaasssasanneeneaaaaaannes 29

7. REAL-TIME EMULATION . .. ooooooooeooooosoioosooioioneoioioronoseeronsosssonsneeserersessrensessrereesenes 30)
8. COMMERCIAL STB ..ottt ettt ettt e e e e e e e e e e e e e e aanas 31
D. HARDWARE ABSTRACTION LAYER ..ot 32
N L e LT AT 32
4 SR S A AT AT T 359
R RN R EY E e T e e e PP 33

4 MPEG/PSIP Table Management. ... ittt 33
AT T O UCTION .. o it eec e e e ee e e e ctee e e eeeeanteeeeeanteeeeeanneeeeeannteeeeannneeeeannseneeansteneenneeneeanseen 33

D.4.2 VINUAI CRANNEIS ...ttt ettt e e e e et e e e e e e s eeaesaanne 34

I L S T (o= 34

O A EVENT TNTOTTIIATION ..o eee tuveesserreeseoneeeesnemeeseaeseeesaeseeeesaeeeeeesaeseeeesaeeeeesarseeesaeeeeersaeeeessaeeeenseeeees 34
BZ5 Raling TNOMMation ..o 37
4.6 [T eI Te I 35
DA77 EXIENTET TEXTIMIESSAUESvveeevieeirieseissseisssireessseesseesesssessssesssssssseessseessssesssesssseessseessseesses 35|

p. [e W =T YT Lo U 35

p.5.1 Description of Data Broadcast Classes inthe HALcoooeviiiiiiiiiiiieeeeeeeee e 36

|9.6 A I e LY R I A 38
D.6.1 [T e Yo Vo3 o 39

.0.2 G E e S = T 40

. T RESOUICE LOGUING +-.vvvvvvvuenenennnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnnnnsnnnnnnnnnsnsnsnsnnnsnnnnnnnnnnnsnsnnnseees 47T

p. N = E T e e PP 41
7.1 ADSTTACT DBCOGETeeeeeeeeeeeuserersssssssesssnsnnssesseeseeeassnnsssseessssassnsseseeeseesassrssessseesseeensssssreeeeesersseees 2T

% NN N I = 23|

|10. AP IMPLEMENTATION ...ttt et e e e et e e e e et e e et e e et e eeas 45

0.1 (e Yo (e T T T T 45
. N L= N A = I 7
0.3 S R AN A o T 48

(@ 27T V2= 2 43

PaCKAQE JAVAX.IV.SEIVICEuiiivriiiiitiieiitieeeests e e eess s e aeaasseeat s s e eesssetsea s eatat s aeennaererneeaesnannns 45

Package JaVaX.lV.SEIVICE.QUITEieuniiieiiiee it e e e e et e et et e et e et e st e st e raesabasasaaesens 49

0.3.5 Package Javax.lv.ServiCe.NAVIQATIONcccureeereureessaiueeesseiieeesaeneeesaeneeesaeienesainneeesaineeeesaieees 51
0.3.6 Package JavaX.tV.SerVICE.SEIECTION........coou i 52
[10.3.7 Package Javax.lV.SerVICE.ITANSPONT.vueiteeeeiieeeeeeieeeeeieeeseieeeaaieeeeseiteeaesieeeeesieeeeeseeeeas 56
A~ USEr and PTETETeNCe VTANMAG EITIETIToveeewweeseenreeseermroraaeomreesaeereeraeesreereseeereeeaseeeereeereereeeees 58
(O S A R Gl [59
0.4.2 User and Preferences Classes INthe HAL ... 60
0.4.3 Preference RegISITY and PreTeIENCE o eieeeeseeieeeesaeeeeensaeeeessaeieeesaeeeresaeineeesssieeesaeieeees 61
|10.5 Application (Xlet) ImMplementation ... 63
0.5.1 Packages Javax.tv.xlet and 0rg.atSC.apPPICATIONeeeiiurriieiiuriieiiiiiieisiiiieisiireeesinneeesnneeens 03
6 DATA BTOAU CAST AP . oo teeoeoreeesarrrerameeeeeerareeerereeraseeeseeerarererereerereeerereeeeeeerereerereerereeeereereees 6D
[¢ AL oL [V T o T 05

ST e T TV T T 66
ATA SEIVICE ANNOUNCEIMIENT oo iiiiesesiiessssensssssnnsssrssnssssssnassssssssssssssssssssresssssssessssssasssssnnses 66

0.6.4 Data Broadcast APl Implementation MappIiNgsS........coooeeeeeeooeeee e 6/
0.6.5 ISSUES AQNU NOTEScuiiiiiiiiiiiiiiiiii s s st et s e rarraees 06
U.6.6 DaTA SETVICE ATTESSeeeerorrreorsorreroorreerooemeerrooreesoosoeeessosoeeeerareressarseesrarereerorrteerarereeeroseees 6Y
S S I BN T T ToE - PP 71
TNEe NEtWOTKING AP .. .o bes s s sessssssssssrereees (2

. R I A e TP 73
0.10 The Document Object Model (DOM) AP ... e 73
(O N R A R N T) T (4
0.12 Y I (4

0.0 T CUITENT STATUS ..o oo oo i eiioeieerseereersaeeeeesaeerseesaeeseesaoeeeeesaoeseeessoeeeeesaseeeesaereeesnseeeeesasereeesoeeees 74

0.12.3 SUPPOIEA DEVICES.....ceeieeiiiiiiiiieeieeeee ettt e e e e e ettt et aaeaaaantteeeeaaaaaaaannnbeeeaeaaeeaaaannreeeeaeaaaanes 74

(O o Yo TP (4

0.12.5 N Lo T (4
|1_0ﬁ13 DY/ ST (4
0.13.1 | RO To VTS o (4
Il_OEM Complete Data FIOW EXAMPIESooocoooeoeoeososoroeersorsioersesersenereenersenerseneesensenensenersrnerereeereeeens 74
(O R L e Yo Vot oY 74
0.14.2 Service INformation EXAMPIE ..o /6
(N = o1 8 o N A (8
12. JAVA RUNTIME ENVIRONMENT EXTENSIONS......o.ooo 79
13, APPLICATIONS. ...ttt e e et e e e e et e e aeeenns 81

A PrOtOTYPICAL XIBE ittt et e e e e et e e s e e e e eeeeeteeeeeasseestnnnasaanaaaaseees 81
e Electronic Program

THE STOCK STICKET XIBL ..ieeeieiiei ettt e e ee e e e e e e e et s e e e e s s eeaaabsseessessssbanaeeasanaees 83

[[RYTge e [VTe LT T 83

.32 O PONEINES . itiiiii ittt i ettt et sttt e ettt e s s e e s s e e s s e eeter e retanr e e et a e e et e e e s e r e e s s e rnnrreeas 83

3. € STOCK TTCKET KT ..o oo e eoeeooeeoweoweseeeesneeseemesneeeeenneeneeneenneeeeesneseeneesneeeeneeseeereeneeseeseessereeses 84

3.3.4 COMPIING (UNIX) teeeiiiiiiiiiiiiiee e e s ettt eeeee e e s sttt eaeeessassttaaeeaaeeasasssaeaeaaeeassassssssesaeaessannsssseeeaessnnnes 85
ES.S.S Setting up the RUN ENVIFONMENT (UNIX) ..o 85
3.3.0 RUNNING (UNIX) ...iouiiiii et e e et e et e s s s e s e e s sb s e sa s e ra s aaa e e sansanans 31S)

3.3./ StockTicker Xlet Source Code (Selected MOUUIES)iuie i [<]S]

L4, DTSCLATMER ... oottt eocssocssoesoeseuasneenseeseenseeseereeeneesenseeseeseesenereesreesreeseeseereeneesseesees 83

1. INTRODUCTION

This document describes the National Institute of Standards and Technology (NIST) prototype
implementation of the Digital TV Application Software Environment (DASE) Procedural Application
Environment (PAE). The purpose of the implementation is to provide a programming environment for DASE
applications. The implementation relies on the Hardware Abstraction Layer (HAL) for access to system data
and resources that are normally system dependent. THE HAL isolates the implementation from the
underlying Set-top Box (STB) environment, including transport stream data management. In the current
NIST implementation, the HAL communicates with the NIST Simulation for STB functionality and transport
stream data access.

The NIST DASE Prototype Implementation PAE Implementation Guide provides the reader with a
behind the scenes view of the implementation internals. It is hoped that this document will provide insight to
other developers in their implementations and help to clarity the interpretation of Application Programming
Interfaces (API) specified in the DASE PAE document [A100/2].

2. DEFINITION OF TERMS
2.1 Acronyms and Abbreviations
API Application Programming Interface

ATSC Advanced Television Systems Committee
AWT Abstract Window Toolkit

DASE Digital TV Application Software Environment
DAVIC Digital Audio Visual Council

DET Data Event Table

DST Data Service Table

EIT Event Information Table

ETT Extended Text Table

HAL Hardware Abstraction Layer

HAViI Home Audio Video Interoperability

JDK Java Development Kit

JMF Java Media Framework

JNI Java Native Interface

JRE Java Runtime Environment

JVM Java Virtual Machine

MGT Master Guide Table

NIST National Institute of Standards and Technology
PAE Procedural Application Environment

PCR Program Clock Reference

PSIP Program and System Information Protocol
P-Java Personal Java

RI Reference Implementation

RRT Region Rating Table

SDF Service Description Framework

STB Set-top Box

STT System Time Table

VCT Virtual Channel Table

UML Unified Modeling Language

URI Uniform Resource Identifier

2.2 Terms
DASE application:

data broadcast application:

data carousel:

data-enhanced A/V channel: corresponds to a television service that also carries data
components.

data service:

hardware abstraction layer:

stand-alone data channel: corresponds to virtual channels with only data components.

service:

television service: corresponds to virtual channels with audio/video components.

xlet:

3. APl IMPLEMENTATION MAPPINGS AND STATUS

3.1 Status Table Guidelines

Throughout this document the completion status of the implementation at various levels is given.
provides descriptions for the stages of completion. This will give the reader some indication of the
status of API packages.

Level Explanation

Complete (Fully Implemented, Reviewed, Tested)

Mostly Complete (Mostly Implemented, Not reviewed, Not Tested)

Partially Complete (Most APIs covered, holes exist, not reviewed, not tested)

Some Implementation (Minimal functionality provided)

Implementation Template Classes Created

OO|AR|WIN(F

No Implementation

Table 1 Status Guidelines

3.2 DASE API Implementation Status

The NIST implementation adheres to the DASE API specification Version A-100 Release 0
distributed on or about June 29", 2000. It is important to note that this is not the latest release. The current

release is Version A-100 Release 4 distributed on or about October 23", 2000. NIST chose to freeze the
implementation at this release to avoid excessive updating and changes to the implementation that would
hinder progress. NIST will update the implementation when a stable (approved) version of the specification
is available. gives an overview of the API package specification to implementation mappings. The
table also gives an indication of the completeness for each package.

Specification Package Implementation Packages Level
javax.tv.carousel javax.tv.carousel, gov.nist.hwabstract 3
javax.tv.graphics javax.tv.graphics 1
javax.tv.locator gov.nist.locator 3
javax.tv.media 4
javax.tv.media.protocol 4
javax.tv.net javax.tv.net 5
javax.tv.service gov.nist.service 3
javax.tv.service.guide gov.nist.service.guide 3
javax.tv.service.navigation gov.nist.service.navigation 3
javax.tv.service.selection gov.nist.service.selection 2
javax.tv.service.transport gov.nist.service.transport 4
javax.tv.util 5
javax.tv.xlet gov.nist.hwabstract 2
org.atsc.application org.atsc.application, gov.nist.application, 2

go.nist.hwabstract
org.atsc.carousel org.atsc.carousel 1
org.atsc.data gov.nist.data 3
org.atsc.graphics org.atsc.graphics 5
org.atsc.management org.atsc.management, gov.nist.hwabstract 3
org.atsc.net org.atsc.net 5
org.atsc.preferences org.atsc.preferences, gov.nist.preferences 2
org.atsc.registry org.atsc.registry, gov.nist.hwabstract 2

org.atsc.security

org.atsc.security

org.atsc.si

gov.nist.service

org.atsc.si.descriptor

org.atsc.system

org.atsc.system

org.atsc.user

org.atsc.user, gov.nist.user

org.davic.media

org.davic.resources

org.havi.ui

org.havi.ui.event

EEN NG [NN I NG e | N E)]

Table 2 PAE API Implementation Status

4, DEVELOPMENT ENVIRONMENT

It is important to note the development environment for the various software packages provided in
the NIST DASE Development Environment (fable 3). The STB simulation environment is not restricted in
any significant way to the use of software. The DASE Applications are restricted to the DASE API
specification and Java Swing. It is anticipated that the necessary Java Swing packages for an application
will be downloaded as part of the application. The APl implementation is restricted to the environment
imposed by the DASE PAE.

General Specific

Hardware Intel Based PC Platform
Operating System Solaris, Linux

Simulation Platform JDK 1.2, GNU C version 2.8.1
API Implementation Platform *Personal Java 1.2, JIMF 1.1
Additional DASE Application Libraries Java Swing

Table 3 Development Environment

*Currently the API implementation only uses classes defined in the DASE-J spec (pJava plus some
additional classes). However, the entire NIST platform (APl implementation plus simulation) is built and run
using the JDK version 1.2 which is not pJava only. Specifically, the simulation platform makes use of classes
that are not found in DASE-J. NIST has produced its own internal version of the DASE-J libraries for testing
the APl implementation.

The simulation environment uses a C program to initialize the JVM. The Java Native Interface (JNI)
calls are based on the Java version 1.2 libraries.

In addition to Solaris and Linux, there have been numerous ports by others of the development
environment to the Window NT operating system.

5. SYSTEM DESIGN

51 Introduction

The modularization of the DASE architecture allows for stand-alone components to be built
independently. The NIST environment takes advantage of this and is implementing the complete

infrastructure to develop and test a DASE PAE. The scope of the NIST environment includes

implementation of the DASE API and associated managers. NIST is also developing a STB simulation
platform that provides an underlying support environment for the API implementation. Together, the API
implementation and simulation provide a software development environment where the DASE Java APIs
can be exercised and DASE procedural applications can be tested. NIST uses the Sun Microsystems’ JVM
as an implementation of the AEE. Currently the NIST environment does not include an implementation of the

Declarative Application Environment (DAE), although future work may include this segment.

DASE Application (Xlet)

DASE API Interfaces and Classes
NIST Implementation

NIST Hardware Abstraction Layer

NIST STB Simulation Commercial STB

Figure 1 NIST/DASE Prototype Implementation
Software Stack

<<Interface>>
Xlet
(fom xlet)

DASE APP

_— o

— = DASE API

HW Abstraction

\y

<<Interface>>

DASE API Implementation

STB Simulation

Figure 2 DASE Application Interaction

An overview of the NIST prototype implementation stack is shown in Figure 1]At the top of the stack
are Xlets that access the DASE API for receiver services. Implementation classes and the Hardware
Abstraction Layer fulfill the requirements of the DASE API. The HAL provides an abstraction layer between
the implementation and the underlying set-top box environment.

5.2 NIST DASE Development Environment Components

521 Introduction

The class libraries of the NIST DASE Rl include the following:

e The STB Simulation Classes - These are Java classes that implement part of the STB's
functionality, such as ATSC data management, user information storage, the data carousel, etc.

These classes provide services to their clients (The Hardware Abstraction) without dependencies on
the clients and are located in packages st b. nanagers, stb. datatypes andstb. utils.

e« The Hardware Abstraction Classes - These classes are clients of the STB classes and provide an
interface to the APl implementation classes. Functions include merging of the ATSC tables, user
management, and application management. Several of the DASE interfaces are implemented here.
These classes are located in package gov. ni st. hwabstr act .

* NIST DASE API Implementation Classes - Implement the interfaces defined by the DASE API
specification. These classes are contained in packages under gov. ni st .

 DASE API Classes and Interfaces - These are defined by the DASE specification and include
j avax.tv and or g. at sc packages. The interfaces defined in these packages are implemented in
the NIST API packages.

* Non-Java Modules - These are modules written in a language other than Java, but will be
accessed through Java wrapper classes. One example is the NIST ATSC transport stream parser.

In addition, the NIST DASE RI uses several other class libraries that are not part of the NIST
distribution, but are expected to be part of the user’s environment along with the JVM:

e P-Java API Classes - These are Java classes specified by DASE as part of the DASE-J (Java) run-
time environment; i.e. j ava. i o, java.aw, etc. The DASE APl can make use of the standard
Java libraries to implement API functionality. The P-Java API, as defined by Sun, is to be used.

» Java Runtime Classes - These are Java classes delivered as part of the Java development kit. The
NIST RI uses the Sun JDK based on the Java 2 platform. Care must be taken that these class
libraries are not part of the CLASSPATH visible to DASE applications.

It is anticipated that the APl implementation classes will be ported to emulated and real-time
environments. Therefore, the interface between the API implementation and the HW abstraction is restricted
to Java method calls. However, the interface between the HW abstraction and STB functionality provided in
the emulated environment may be written in Java, wrapped by a Java class, or accessed via the Java Native
Interface (JINI).

One of the requirements on the implementation is that the Java classes that implement the DASE
API will only call other Java class methods and not interface directly to non-Java modules. A major design
goal is to have the APl implementation independent of the underlying data stream encoding, while
minimizing the number of classes that need to change for porting. To achieve this goal, the NIST Rl is
implemented as three layers with differing roles.

5.2.2 Overview of the STB Simulation

The STB layer implements functions such as ATSC stream parsing, ATSC table management, and
other data management including User and Common preferences; no semantic meaning on the data is
provided by the STB layer, only consistent access to the data.

A central task of the Java STB simulation classes is to provide the implementation with ATSC data
structures and associated data management functions. A key aspect of the API prototype implementation
design is the intermediate software HAL. It provides an interface to the STB environment that hides the
details of the underlying architecture from the implementation. The HAL assumes no intelligence at the STB
interface and accesses the raw MPEG/ATSC table information. At the API interface, the HAL provides a
consistent view of the MPEG/ATSC table information in a manner that reflects the API definition. It is
envisioned that this multi-layered design will ease the task of porting the implementation to other receiver
platforms. Thus a porting effort would be focused on the HAL, which provides a central location where
system level dependencies are isolated at the cost of an extra software layer. This may hinder performance
in response time sensitive components of the system. However, critical performance locations can be
identified and re-coded to achieve performance requirements. This layered approach is a design trade-off in
the NIST implementation, which emphasizes clarity and portability over performance and efficiency

The NIST STB simulation is a collection of Java classes that encapsulate the functions of a generic
ATSC STB. These classes are provided to the APl implementation as services. A special class within the
STB simulation manages and controls access to this Java-based simulation. The STB simulation is
composed of two modules, the STB simulation control and the Java simulation classes. The simulation
control boots the STB simulation and performs system initialization. Tasks include managing the JVM,
running applications, and creating simulation and HAL managers.

The Java simulation classes are largely composed of manager and datatype objects. The manager
objects maintain the ATSC/MPEG table data as well as STB functionality. The datatype objects are
constructs that represent ATSC/MPEG table data, as well as data carousel objects. For example, an
ATSCVi r t ual Channel object contains the information for a virtual channel. The datatype objects act as
simple data repositories that map ATSC data into Java types. The Java simulation also includes classes to
read the raw ATSC ancillary data extracted from a bitstream. The NIST STB simulation does not process the
MPEG transport stream, however, but relies on an external ATSC/MPEG parser program to extract the
ATSC data tables from that stream and provide them as input to the simulation. The format of this simulation
input has been defined by NIST and contains only updated versions of the ATSC and MPEG tables, with no
audio or video streams present.

In summary, the design philosophy with regards to the three layers is that the STB simulation
performs data management by providing a repository for ATSC and other data. The HAL provides
information management by creating DASE objects from the data (DASE Services from ATSC virtual
channels, for example) The APl implementation satisfies the DASE specification via interfaces to the HAL.

5.2.3 Hardware Abstraction Layer Overview

The Hardware Abstraction Layer merges ATSC tables (providing a single view across all of the
tables), and provides the APl implementation access to the data in a convenient format. All of the changes
necessary to port the API should be accomplished within the HW abstraction layer. Therefore, the API
implementation classes will only interface to Java classes and will retrieve all data as Java types.

The HAL Data Manager (class Dat aManager) object manages the global view of the ATSC data
and other data (e.g. Users) for the APl implementation. Many of the other classes within the hardware
abstraction layer provide a mapping of the data from the STB into a format required by the API
implementation.

Some classes in the HAL implement several of the DASE interfaces. For example, class
Xl et Manager in the HAL implements the Appl i cati onRegi st ry interface.

The Hardware Abstraction Layer is not completely void of dependencies on the API classes. In
several cases, the HAL classes will implement interfaces defined by the API, such as the user registry.
These HAL classes will retrieve the underlying data from the STB simulation. When a port is done, the HAL
classes will need to change the low-level access to the data, but their public interfaces will not change.
When data must be accessed with a single view (such as user management), the HAL performs this data
aggregation.

524 DASE API Overview

The API implementation classes comprise the third layer. Semantic rules defined in the DASE API
specification (such as user preference filtering) will be done in the APl implementation classes.

The DASE API functionality is provided by a set of Java classes that implements the APl methods.
The naming conventions we have chosen to use are as follows: API classes and interfaces are named
exactly as they appear in the DASE specification. Implementation classes that support an interface use the
interface name with Cl ass appended. For example, the API class Ser vi ce is implemented by class
Servi ceCl ass.

The core work of the implementation classes is to map the data maintained by the hardware
abstraction layer into the views provided by the DASE API. For example, the implementation class
Servi ceCol | ecti onC ass will use data from the ATSC virtual channel table, as well as other ATSC
tables, to return collections of Ser vi ce objects. Other functionality of the APl implementation is to provide
for control over streaming data by the DASE application.

In summary, the design philosophy with regards to the three layers is this: The STB simulation
provides data management by providing a repository for ATSC and other data. The HAL provides
information management by creating DASE objects from the data (DASE Services from ATSC Virtual
channels, for example). The APl implementation fulfills the DASE specification and interfaces to the HAL.
Most of the behavior defined in the DASE specification is implemented here, although in some cases that
behavior will be implemented by the HAL. For example, the Xlet lifecycle model is implemented in the HAL.

6. THE STB SIMULATION

Package
Instantiates one . stb.managers
. STBSimManager .
STBSimManager and —

one DataManager -

_—

\
| -
STB_main —

_—
_—

5 ‘

. |

N ‘
AN

\

~ |
‘ ~ DataManager
\
|

AN
N

v
PCRManager

~
Package
gov.nist.hwabstract

Figure 3 Simulation Components

6.1 Introduction

The STB simulation provides the platform on which the DASE API executes. Figure 2]shows the
Unified Modeling Language (UML) diagram for the DASE application to API interaction. The diagram shows
how the API implementation (supporting the interface defined by DASE) relies on the hardware abstraction
and STB simulation to provide services.

Figure 3|shows the main components of the STB simulation and the runtime relationships between
the components. The controlling process for the simulation is a C program called STB_mnmai n. This program
starts up the Java virtual machine (JVM) and creates the STB manager (class STBSi mvanager) and the
HAL Dat aManager objects within the JVM. Also, STB_nai n creates the PCRVanager program as a child
process.

10

6.2 The Native Code Components
6.2.1 The Simulation Control Program

The central point for starting and controlling the STB simulation is the program STB_rai n that is
written in the ‘C’ language. This program performs several functions:

» Loads the Java Virtual Machine (JVM)
« Controls the logging process for itself as well as the JVM and Java code
» Starts the Program Clock Reference (PCR) generator program

» Allows for the launching of Java programs from the command line

STB_nai n loads the JVM upon startup. Two objects are instantiated within the JVM with the logging
option set based on the command line entry. These objects are STBSi mvanager and Dat aManager as
can be seen in If the attempt to create either of these objects fails, the simulation terminates.

The PCR generator program, PCRVanager , is a stand-alone program started as child process by
STB_nai n. The command line parameters are passed to PCRVanager from STB_mai n, notably the socket
number used by the program to communicate with the HAL. The next section describes PCRManager in
more detail.

The NIST DASE Development Environment User’'s Guide [USER-GUIDE] provides detailed
instructions on running the simulation.

Transport PCR PCR
» Parser >
Stream Time Manager
stamps
A
Tuni
ATSC PCR|Clock
Tables
A4

ATSC MPEG Decoder
Stream Reader Manager

Simulated STB Environment

Figure 4 Decoder Hardware Simulation

6.2.2 Program Clock Reference Manager

11

This component simulates the real-time hardware PCR that should be found on any hardware
MPEG decoder. shows the interactions between the PCR Manager and the rest of the simulation
environment. The PCR Manager acts as the interface between the stream parser that periodically receives
PCR timestamps and software components higher in the rendering chain that want to read such a clock on a
random-access basis.

The specification for ATSC requires that PCR timestamps be sent at least every 20 ms, so the PCR
server does not implement a complex phase-locked loop (PLL), but rather a simple one-time linear
adjustment algorithm.

6.2.2.1 Stand-alone mode

Syntax of the program (use -h for details):
PCRManager [-p port] [-wfile] [-f fifoNane] [-i PID [-v] [-v -i PID.....]

PCRManager tracks the local clock on the PID number defined by DSTP_VIDEO_PID (currently
0x8951=35153). If no FIFO is specified on the command line, this PID can be used for test purposes,
without a parser attached. Upon receipt of a SIGUSR?2 signal, a discontinuity condition is simulated on the
test stream. A SIGHUP signal will reset the clock to 0 with a discontinuity condition.

Additional PIDs may be simulated with the - i option; they are not affected by signals.

6.2.2.2 Interface to the Stream Parser

The parser sends each PCR Timestamp it receives to the PCRManager . Theoretically, there may be
as many as 64K different PCR clocks, one for each possible PID. Although it is most likely that a hardware
device will track only one PCR clock (which one?), PCRVManager will track any number of PCR streams. For
each PID encountered in the stream, the manager maintains a clock trained to the timestamps received from
the parser; it also keeps track of discontinuity conditions indicated in the header (a counter is incremented
for each discontinuity). The structure of a PCR packet from the parser is shown below:

struct PCRTi meStanpStruct {
unsi gned char header;
unsi gned char fl ags;
unsi gned short PID;
unsi gned int PCRH gh;
unsi gned i nt PCRLow,
unsi gned i nt paddi ng;

b
6.2.2.3 Interface to Clients
PCR Ti ¢ (socke TCP Client
Imestamps SOoCKe
Parser (fifo) *>»PCRManager _
4—— TCP Client

Figure 5 PCR Manager to Client Communication

The interface with rendering components is done concurrently via TCP/IP sockets. figure 5 shows
the PCR Manager interaction with a TCP/IP client. This model is intended to simulate the behavior of a
device driver (many being able to access it at the same time). A client will connect to the port specified in the
command line. The communication between both ends is done via standard packets shown below:

struct PCRS| aveRequest Struct {
unsi gned char PI DHi gh; [* 1 */

12

unsi gned char Pl DLow,

unsi gned char pcr[8];

unsi gned char conti nuityCounter;
char invalid;

~ Y~
* %k kX

A client prepares a packet by filling the PCR field.

sets the invalid flag, and sends the message back.

6.2.2.4 Test Feeder

*/
*/
*/
*/

PR ok

Upon receipt, the server fills in the other fields, or

PCRTest Feeder is a test program to generate parser packets.

6.2.3 The Bitstream Parser

The parser process demultiplexes the transport stream from a file or a pipe. It routes the ATSC
tables to a reader object in the Simulation (described elsewhere). PCR Timestamps are sent to a
PCRManager process (see below). A back channel to the parser is available for simple tuning operations.

6.3 Java Components

13

ATSCByteStreamParser
(from managers)
DtvDisplay
(from managers) ATSCManagerSet §¥ATSCByteStreamParser()
(omimanager) @A TsCByteStreamParser()
EDuisplay() [®destroy(
[E¥accesss$0() [#aTscManagersset); < ——— | [#getCurrentATSCManagerSet()
[E¥accesss$1() [®aTSCManagerset() [#getCurrentPhysicalChannelNumber()
[Saccess$2() Enitialize([®getCurrentTSID()
[S¥accesss$3() [®isActive()
#add() A [WastActiveTimeMillis
[#addNotify () N [E¥eadBytes(
B aint() [®runo
STBSimManager [®sendCommand()
(from managers) \
AN
s T1BSimManager()
s TBSimManager() ATSCDataManager
.addSTBChangeListener() (from managers)
[#adduser()
[#deleteUser() @A TsCcDataManager()
[#induser() [®ATSsCDataManager()
[#getATSCDataManager() fgoetATSCManagers et
[#getCommonsettings() [WgetATSCTables()
[#getCurrentUserList() N.getAllATSCTables()
[#getDtwDisplay () [BgetTsIDLIst()
[#getsTBStates() Einitialize()
[®getUserListSize() [#¥makeConditionalAccessTableCurrent()
Einitialize() [@¥makeDataSenviceTablesCurrent()
Efnotify STBChangeListeners() |#¥makeMasterGuideTableGroupCurrent()
E¥eadData() |g¥makeProgramAssociationTableGroupCurrent()
[removesTBChangelListener() |$#¥makeSystemTimeTableCurrent()
[#saveData() [@¥notifyModuleDownloadComplete()
T —— [#setCommonSettings()

(from utils) .deateUser() \
.SetManager() STBConfigManager N
‘dd() (from managers) ATSCTableSet
llone() (from datatypes)
.:Ielete() SystemManagerSet TBConfigManager
.eafJData() S ¥ (from manag?ers) ETB ConfigManagerg [@aTsCTableset()
e trieve(inalize([#setDSTDownloadlds()
Eiazv:(l)Data() .SystemM anagersS et() metCommonPreferences()

o Array([MgetRatingLevel()
-setCommonPreferences()
[etratingLevel()

Figure 6 Simulation Management Classes

14

<<specification>>
Tap

ATSCDataServiceTable

<<specification>>
Data Service Table
Section

% ATSCDataSeniceTablesManager

<<specification>>
Event Inform ation
Table

<<specification>>
Extended Text
Table

<<specification>>
System Time
Table

<<specification>>
Master Guide
Table

<<specification>>
Virtual Channel
Table

=
=
=
=
=
=

<‘ —_—
ATSCEventinformation
§ - — —_—

o % ATSCE wentinformation Table Manager

E ATSCExtendedTextM essage
\E ATSCExtendedTextTableManager

P ATSCSystemTimeTable

% ATSCMasterGuideTableEntry
\i ATSCM asterG uideTableManager

<— — — — ATSCVirtualChannel

~ - — —

ATSCVirtualChannelTableManager

<<specification>>
Network Resources
Table

=

o

- % ATSCNetworkResource

<<specification>>
Rating Region
Table

=

% ATSCRatingRegionTable

ATSCRatingRegionTablesManager

Figure 7 Data Management Components

Figure 6]gives the class diagram for the simulation classes used to maintain the STB state. For
example, configuration management, Figure 7]shows the mapping of the ATSC data tables to the simulation
components. The components in right side of the diagram represent the Java classes used to store and
manage the ATSC table data. The data and management classes are discussed in the next sections.

6.3.1 The Manager Classes

The manager classes are responsible for maintaining the ATSC data tables as well as users,
application data, and other data sets associated with the STB simulation. These classes are in package
st b. managers.

The simulation manager STBSi mivanager object is responsible for creating the ATSC table
manager objects, the ATSC data stream readers ATSCByt eSt r eanPar ser (one for each virtual tuner),
and several other managers such as the STB configuration manager. The STBSi mvanager implements
several management functions directly, such as user management.

Each table manager handles one type of ATSC table, and only one instance of the table. In order to
manage more than one table instance (such as when there are multiple streams) multiple instances of the
table manager must be created. Examples of table managers shown in are the
Vi r t ual Channel Tabl eManager and Mast er Gui deTabl eManager classes.

The highest visibility of the ATSC table manager classes is package. This restriction means that
only classes contained within the st b. manager s package can call the retrieval methods. The ATSC tables
are private data within the manager classes. Therefore, the retrieval methods of each manager return a
reference to an array containing the data elements of that table. There is no danger of having the array
updated (due to the arrival of a revised table in the input stream) during the get Xxx() method because any
new updates to the table are maintained in a separate array, and access to the current arrays is
synchronized.

Table managers are grouped into sets where one set manages one transport stream (as identified
by its TSID). The ATSCMVanager Set class maintains this grouping.

Class ATSCDat aManager acts as a central control point for access to all of the ATSC and MPEG
tables. A reference to an object of this class is returned by method
STBSi mvanager . get ATSCDat aManager () . The public methods of class ATSCDat aManager provides
access to the ATSC tables and MPEG PMT/PAT tables via the ATSC table managers. The tables are
returned as a set with references to the tables contained in an ATSCTabl eSet object.

6.3.2 Input Stream Parsers

The parser classes in package st b. manager s are responsible for extracting the information from
the MPEG and ATSC tables, as well as Data Carousels, contained within the NIST-defined input stream.
These classes cannot be used to parse an MPEG transport stream as the simulation relies on an external
process to perform that function.

Class ATSCByt eSt r eanPar ser is the main parser for the ATSC data stream format defined by
NIST (see [USER-GUIDE] for a description of this stream). This class extends the Thr ead class in order to
run independent of the main STB simulation. The simulation manager STBSi nivanager creates an object of
this class as an active thread.

16

The run() method of this class waits to read data over a FIFO and determines what type of data it
is (ATSC PSIP table, MPEG table, Data Carousel, etc.). ATSCByt eSt r eanPar ser calls method
par seSecti on() of an object of class Pri vat eSect i onPar ser to perform the actual data stream
parsing.

6.3.3 The Datatype Classes

package stb. dat atypes;

public class ATSCVirtual Channel extends ATSCDat atype inplements C oneable {
/** Indicates if this is a terrestrial or a cable virtual channel. */
public int del i ver ySyst enilype;
/** Constant for <code>deliverySystemlype</code>. */
public final static int DELIVERY TERRESTRI AL = 1;
/** Constant for <code>deliverySystenlype</code>. */

public final static int DELIVERY_CABLE = 2;
/** Constant for <code>deliverySystemlype</code>. */
public final static int DELIVERY _SATELLITE = 3;
public String short nane;

public short maj or _channel _nunber ;

public short m nor _channel _nunber;

public short nodul ati on_node;

public |ong carrier_frequency;

public int channel _TSI D,

public int pr ogram nunber;

public byte ETM | ocati on;

public bool ean access_control |l ed;

public bool ean hi dden;

public bool ean hi de_gui de;

public bool ean pat h_sel ect;

public bool ean out _of band;

public byte service_type;

public int source_i d;

/**

: <code>ATSCArraylLi st </ code> of <code>ATSCDescri ptor </ code>s.
pgfk:l i c ATSCArraylLi st descriptors = new ATSCArraylLi st (5);
/* Creates and returns a deep copy of this object.

: @eturn A deep copy of this instance.

pu/bl ic oject clone() {

} /* public Object clone() */
} /* public class ATSCVirtual Channel */

Figure 8 Class ATSCVirtualChannel

The datatype classes correspond to the entries in the ATSC data tables and other information
managed by the STB simulation (Users, Preferences, etc.) These classes are in package st b. dat at ypes.
For example, an ATSCVi r t ual Channel object contains the information for one virtual channel. The
datatype classes act as simple data repositories for the ATSC data mapped into Java types.

All of the ATSC data classes are derived from a base class called ATSCDat at ype that implements
the Cloneable and Serializable interfaces to enable deep copying and object serialization. The non-ATSC

17

data classes (User for example) derive from base class Si nDat at ype that also implements Cloneable and
Serializable.

The datatype classes define all of the attributes of the class as public. Therefore, there are no
access methods; the data items are manipulated directly. This approach simplifies the client programming in
that there is no need to call several methods to retrieve simple data items. The attributes of the class have
the same names as the tables defined in [ATSC:A65]. The simulation assumes that the client classes will
access the data in a read-only fashion. Therefore, if a client class changes the data fields, that change will
be reflected to other clients because references to the data are returned from the ATSC table managers, not
clones. The philosophy of the simulation is to treat the data as a shared memory segment would be treated,
with little locking. However, locking of the tables does occur when the makeCur r ent () method of a table
manager is called because this method is declared synchr oni zed. This locking mechanism allows the
current version of the table to be replaced with a new version and prevents clients from retrieving a mix of
current and new data.

Figure 8|shows the ATSC Virtual Channel class as an example. The descriptors associated with the
table are included in the class as an ATSCAr r ayLi st , a datatype class created for consistent access to
ATSC descriptors. Also, the cl one() method is overridden in classes where it is necessary to provide deep

copying.

Other classes contained in package st b. dat at ypes are classes used to represent various data
items internal to the simulation. Examples of these classes include ConmonSet t i ngs to store the STB
settings and preferences, and various exceptions thrown by the STB simulation.

6.3.4 Other Classes

These classes are various stand-alone utilities like Huffman coder/decoder, output functions in
compressed bitstream form and logging classes used throughout the simulation. Class ATSCI nput St r eam
contains utility methods used to parse specific sections of the input stream. The classes are in package
st b. util s. Another class in this package, Set Manager , implements a simple associative set, useful for
small databases. The simulation manager uses this class to create databases of users, STB settings, and
other set-top box information.

6.4 PSIP Table Management in the Simulation

18

ATSCMasterGuideTableManager
(tom managers)

[§¥A TSCMasterGuideTableManager()

ATSClnputStream

ATSCByteStreamParser
om utils) (from manage's)

ATSCExtendedTextTableManager
(from managers)

ATSCExtendedTextMessage
(from datatypes)

[§¥ TSCExtendedTextTableManager()
|#lhddMessage()

L

105 NATURE_IS_CHANNEL : byte = 0
106 NATURE_IS_EVENT : byte = 1
Whature : byte

.‘a;g:etscnpmr() [f8betCurrentMessagelList() isource_id : int
[ifiaddEntry() |§BimakeCurrent() Wkvent_id : short
[§8uetCurrentDescriptorList() —7| litesetNew()

[§BuetCurrentEntryList()

[¥is AliReceived() [~

[inakecurrent()

[finarkTableReceived() —

lfesetnew) PrivateSectionParser ATSCEventinformationTableManager ATSCEventinformation
(from managers) (from managers) (from datatypes)

[TSCEventinformationTableManager()

Wsource_id: int
Weent_id : short

(~ [§8addE vent() > Wstart_time : long
[§BbetCurrentEventList() LETM_location : byte
ATSCMasterGuideTableEntry 7 N\ o [§BimakeCurrent() Wlength_in_seconds : int
(from datatypes) / [§BfesetNew()
Jihum beroBytesReceived : long N\ o
Jieceived : boolean / .
licble_type : int ATSCVinualChanneiTableManager |\
. ger
Itable_PID : short / (rom managers ATSCSystemTimeTableManager ATSCSystem TimeTable
Wiable_type_version_number : byte e Gromloatatypes)
umber_bytes : long e N\ o T ystem_time : fong
ahumoer] [#BATSCVirtualChannel TableManager 58 178 ofrn 8 oo
8 TS CSystemTimeT. 0 BiSPS_UTC_ofset :
yZ [#ihddChannel) N\ MDS_status : boolean
[#hddDescriptor([@etCurrentTable(WPS_day_of_month : byte
y etCurrentChannelList(\ [§Bimakecurrent() M _hour - short
etCurrentD ist() [ctNewTable() =
akeCurent
ATSCRatingRegionTablesManager urent(\
(from managers

[TSCRatingRegionTablesManager() ATSCConditionalAccessTableManager
[§eddTable() ATSCVirtualChannel (rom managers)
[§8uetCurrentTableList() (from datatypes)
[§¥makecCurrent() iieliverySystemType : int @ TscconditionalAccessTableManager()
[lresetNew() W DELIVERY_TERRESTRIAL : int = 1 [§addDescriptor()
5 DELIVERY_CABLE : int = 2 etCurrentD ist()
I DELIVERY_SATELLITE : int = 3 akeCurrent()
Winajor_channel_number : short 0

\uminor_channel_number : short
_modulation_mode : short
\farrier_frequency : long
Wchannel _TSID : int
__brogram_number : int

JE M _location : byte
\uhccess_controlled : boolean
\hidden : boolean
\hide_guide : boolean
_path_select : boolean
\but_of_band : boolean
Wsenice_type : byte
source_id : int

ATSCRatingRegionTable
(rom datatypes)

\Lfating_region : short

\bersion_number : byte

Figure 9 PSIP Management Classes

6.4.1 PSIP Table Classes

This section describes the management of the Program and System Information Protocol (PSIP)
tables within the simulation. The definition of the PSIP tables is contained in [ATSC:A65]. The simulation
classes directly map the PSIP tables in terms of data layout and management as described in Section §.3]
This section provides more detail on the classes used to maintain and manage the PSIP table data. L
shows the class diagram for PSIP management.

What follows is a brief description of the classes used to manage the PSIP tables within the
simulation. Because table management is a core issue in any STB, these classes may be reused and
recombined to support the needs of PSIP data.

6.4.1.1 Manager Classses

These classes are located in package st b. managers.

6.4.1.1.1 ATSCDataManager

This class is the main access point for all of the table manager classes. It provides synchronized
access to the tables so that a complete table will be accessed, and also that the complete set of tables
associated with the Master Guide Table are kept in alignment.

19

6.4.1.1.2 ATSCEventIinformationTableManager

It manages a collection of events as defined in [ATSC:A65]. This class is analogous to the Event
Information Table.

6.4.1.1.3 ATSCMasterGuideTableManager

Manages a collection of entries from the Master Guide Table (MGT). This collection includes all
descriptors sent down with the MGT.

6.4.1.1.4 ATSCRatingRegionTablesManager

Manages a collection of Rating Region Tables (RRT). Each table contains the rating information for
a single rating region.

6.4.1.1.5 ATSCVirtualChannelTableManager

This class manages the collection of virtual channels. A current collection and new collection are
maintained, and when a new table is parsed, the new collection replaces the current collection.

6.4.1.1.6 ATSCExtendedTextTableManager

This class manages a collection of extended messages.

6.4.1.2 Datatype Classes

These classes are located in package st b. dat at ypes.

6.4.1.2.1 ATSCDatatype

This class is the parent class of all the datatype classes.

6.4.1.2.2 ATSCEventIinformation

This class contains the information for one event of an Event Information Table, as defined in
[ATSC:AB5]. It is a simple repository for the event information by mapping the event information into Java

types.

6.4.1.2.3 ATSCExtendedTextMessage

This class contains the information for a single Extended Text Message, as defined in [ATSC:A65].
It is a simple data repository for the Extended Text Message data as Java types.

6.4.1.2.4 ATSCMasterGuideTableEntry
This class contains the information for one entry of the Master Guide Table, as defined in

[ATSC:AB5].

6.4.1.2.5 ATSCRatingRegionTable

This class contains the information for a Rating Region Table, as defined in [ATSC:A65].

20

6.4.1.2.6 ATSCVirtualChannel

This class contains the information for a single virtual channel, as defined in [ATSC:A65]. Virtual
channels from both the Cable Virtual Channel Table (CVCT) and Terrestrial Virtual Channel Table (TVCT)
are represented by this class.

6.4.2 Virtual Channel Table Example
ATSCVirtualChannel
ATSChputStream (from datatypes)
from utils) !deliverySystemType int
!$ DELIVERY_TERRESTRIAL :int=1
ATSCByteStreamParser -$ DELIVERY_CABLE :int=2
(from managers) m DELIVERY_SATELLITE : int =3
-major_channel_num ber : short
.ATSCByteStream Parser() -minor_channel_num ber : short
.ATSCByteStreamParser() !modulation_mode : short
.destroy() !carrier_frequency : long
[#getCurrentATSCManagerSet() [ichannel_TSID : int
[#getCurrentPhysicalChannelNum ber() [BEprogram_number : int
.getCurrentTSID() -ETM_Iocation : byte
.isActive() -access_controlled : boolean
; . /.IastActiveTimeMillis() [lghidden : boolean
PrivateSectionParser -readBytes() -hide_guide - boolean
(DD MEDEEEE) [Hrun([path_select : boolean
[Bsendcommand() [lout_of_band : boolean
[senice_type : byte
[I@source_id : int
ATSCDataManager
(fom managers)
BEverbose : boolean
ATSCVirtualChannelTableManager
@A TscDataManager() (from managers)
[@A TscDataManager() @8verbose : boolean
[S¥getATSCManagerSet()
[®getATSCTables() E#ATsCvirtualChannel TableManager ()
[#getAllATSCTables() [g¥addchannel()
[#getTSIDLIst() [§8addD escriptor()
[Einitialize() [S¥getCurrentChannelList()
|§8¥m akeConditionalAccess TableCurrent() [$¥getCurrentDescriptorList()
[§¥makeDataServiceTablesCurrent() [g¥makecurent(
|#¥makeMasterGuideTableGroupCurrent() [SresetNew()

|#¥makeProgramAssociationTableGroupCurrent()
[§¥makeSystemTimeTableCurrent()
[$8notifyModuleDownloadComplete()

ATSCDescriptor
(from datatypes)

@A TS CDescriptor()

[®clone()

[®descriptorBaseLength()

Figure 10 Virtual Channel Table Management

21

ATSCD_escriQtor ATSCVirtuaICh;nneITabIeManag

ve:
ATSCVirtualChannel

parseVirtualChannelTableSection(ATSGManagerSet, byte[],

PrivateSection ParseJ

parseSection() ‘

‘ ATSCBﬂeS_IreamParser ATSCIn_QutStream

readATSCVirtualCHannel(

- <<create>>

1]

addChannel(ATSCVirtualChannel

readATSCDescriptor()

—‘ <<create>>

1]

addDescriptgr(ATSCDescriptor

Figure 11 Virtual Channel Parsing

As stated above, the main function of the STB Simulation is to provide simplified access to the
ATSC and MPEG tables. The simulation maps the data from the bitstream into Java classes and provides
synchronized access to this data. This section discusses how the ATSC and MPEG tables are parsed and
how the data is then managed. The parsing and managing of the ATSC Virtual Channel table is used as an
example to trace the flow of data through the simulation.

Figure 10]shows the relationship between the classes used for ATSC Virtual Channel Table parsing
and management. Figure 11|is the interaction diagram showing the method invocations needed to perform
virtual channel parsing.

The ATSCByt eSt r eanPar ser object reads the bitstream from the FIFO and calls method
par seSection() of Privat eSecti onPar ser to parse virtual channels from the bitstream by using an
ATSCI nput St r eamobject. Pri vat eSect i onPar ser adds the virtual channel objects to the
ATSCVi r t ual Channel Tabl eManager by calling the addChannel () method. A similar procedure occurs
for adding the descriptors for the virtual channels. After all of the virtual channels and descriptors are read,
method ATSCVi r t ual Channel Tabl eManager . makeCur r ent () is called (not shown in to
move the new virtual channel information to the current table. Subsequent calls to retrieve virtual channels
will result in the new virtual channel information being retrieved.

When the complete table (or set of tables in the case of the Master Guide Table and all associated
tables) is received, the table set manager ATSCDat aManager is notified by ATSCByt eSt r eanPar ser and
the new table (or set of tables) is made current.

22

6.5 Data Broadcast Management

The STB manager is responsible for managing the resources for the data broadcast application as
retrieved from the data carousel, including the Java byte codes for the Xlet classes. Class
Privat eSecti onPar ser retrieves the downloaded modules from the stream and adds the modules to the
ATSCUser ToNet wor kDownl oadManager object. See [ATSC:A90] for a description of the data broadcast
standard. Downloaded Xlets and their data are transmitted using the referenced standard.

Classes in the HW abstraction layer manage the applications in accordance to the data broadcast
specification as well as the DASE view, where ‘application’ means Xlet. In keeping with the overall design
philosophy where the STB manages raw data and the HW abstraction provides semantic meaning,
responsibility for Xlet management lies in the HW abstraction. Support for the DASE application lifecycle
model is also provided by the HAL.

23

PMT vCT

VC loop
| ___program_number

Program_number x @

Elementary Stream 1 major_channel_number

S U - unique
> PID minor_channel_number} a

stream_type: DSM-CC async. Data P source id

association_tag_descriptor [service_location_descriptors]

Elementary Stream 2
P PID
stream_type: DST / NRT

; EITs or DETs
@ Event loop

1
1
1
i > sour(:e_id]> <
i event_id
! Program_ number y
! title
1
1
1
i . ETTs @
1 L]
i Event loop
| (}4 ,,,,,,,,,,,,,,,,,,,,,
i-@-; DST event_id
ext. description
program_number
my_PID

Application loop
app_id (URI)

app type (DASE or UNKNOWN) »--@-> A one-layer Data Carousel
Tap loop _@> downloadld
tap_id Module 1

protocol_encapsulation —» moduleld

——————————— F--- association_tag data

[download_descriptor: downloadId]
Module 2
downloadld -—------——--—of !

selector(): moduleld ---------------—---—--—-

Fields in italics are duplicates
specific to our implementation

Figure 12 Data Service Discovery and Extraction

6.5.1 Data Broadcast Overview

24

As in the rest of the simulation, DST data structures directly map the MPEG and ATSC structures.
However, three fields are duplicated in the DST class and are set at parsing time:

* The program nunmber of the PMT program containing the Data Service - This allows easy lookup
when matching associ ati on_t ags between DST and PMT.

» The PI Dthat carried the DST - Right now, this is used neither by the simulation nor by the HAL, but
will be used in later versions to implement application signaling.

e In DST Taps, the downl oadl d that identifies a Data Carousel.

There are different ways to relate ATSC and MPEG tables. The relationship arrows in
illustrate the chosen method in our implementation:

The set of MPEG-2 program map tables (PMTSs) of a transport stream is stored as entries of an
array. Similarly the set of virtual channels of an ATSC virtual channel table (VCT) are also stored as entries
of an array. The pr ogr am nunber is the data element that relates the corresponding entries of these two
arrays, as shown in relationship 00 of M In this context a (ATSC) virtual channel and a (MPEG-2)
program are synonymous. Each PMT contains a list of resources (elementary streams) for the service
specified in that program. Each virtual channel of the VCT contains the same list of resources for terrestrial
broadcasts, but may not for cable. For this reason we chose to use the PMT for this information, and also
because it contains the added data element associ at i on_t ag, when appropriate.

A DSM-CC stream is specified by its PID data element within the list of streams of a program/virtual
channel. It is also labeled by an associ at i on_t ag in the PMT that corresponds to an associ ati on_t ag
in a Tap loop (application resources) of a DST. By searching the list of PMTs, using the pr ogr am nunber
and an associ ati on_t ag from a DST, one can locate the PID of the corresponding DSM-CC stream. This
is shown in relationship O of By searching the list of DSM-CC streams, using a downl oadi d
from a DST, one can also locate the corresponding DSM-CC stream. This is shown in relationship O of
Specific parts of a DSM-CC stream (e.g., a module within a carousel) can be further referenced
via the sel ect or () field, as shown in relationship O of One example is for an application
(service) carried in a DSM-CC stream as a carousel, where class files are carried in various carousel
modules, another module may contain a jar file and still other modules may contain data files.

25

Each virtual channel of a VCT also contains references to announcement tables. The Event
Information Tables (EITs) and the Data Event Tables (DETS) contain event (service - program or
application) information similar to a TV guide. The sour ce_i d of a virtual channel can be used to search all
the EITs and DETSs to locate events applicable to that virtual channel, as shown in relationship O of Figure |
12 For each event, the pair sour ce_i d and event _i d can be used to search the list of Event Text Tables
(ETTs) to locate further announcement information about that event, as shown in relationship U of
12,

DASE currently limits the number of data services per program/virtual channel to one, but this may
increase in future versions. Thus currently limiting a single data service table/ network resource table
(DST/NRT) stream per PMT. The appearance of an application within a DST/NRT stream signals the
initiation of a data service and the removal of that application from the DST/NRT stream signals the
termination of that data service. A DST/NRT stream is specified by its PID data element within the list of
streams of a program/virtual channel. By searching the list of DSTs, using the pr ogr am _nunber and the
PID, one can locate the corresponding DST from a PMT. By searching the list of PMTs, using the
pr ogram nunber and % PI D, one can locate the corresponding PMT from a DST. This is shown in

relationship O of

Note: The downl oad_i d field in the Tap structure was added as a convenient shortcut when the
downl oad_descri pt or is not present.

Additional information about a Data Service (e.g. announcement and extended description) can be
found in the EIT/DET/ETT tables. The linkage happens through a common sour ce_i d value. Note that this
sour ce_i d value doesn’t necessarily uniquely identify one Virtual Channel, as opposed to the
maj or/ m nor _channel _nunber pair.

26

ATSCDataEventTableManager ATSCByteStreamParser
q
(fominenacers) (0 D) ATSCUserToNetworkDownloadManager
(fom managers)
[TsCDataEventTableManager() @ TsCByteStreamParser(
#TSCB teSt P
*ag?gl:/r?gtn(t)EventLis!() ‘Idestroy{) CEICEIPEBET @ TSCUserToNetwork DownloadManager()
"Q *ddM dul
[§¥imakecCurrent() MyetCurrentATSCManagerSet(>.ﬂgetc0(:n uI:t()eScena\riiLis'[()
[esetNew() #oetCurrentP hysicalChannelNumber() T P ; ;
[§uetCurrentOrganizedList()
MigetCurrentTSID() B
:] @¥yetCurrentRawList()
N s Active(@ emovescenario()
N MWastActiveTimeMillis ()
I’readBytes() i(eestzgcje:\llé)Data()
AN #un(
dC d 7
ATSCDataEvent AN JiendCommandg ‘
(from datatypes) \ / / ‘
wsource_id : int /
Wrata_id : short N / /
wstart_time : long \// ‘
WwETM _location : byte PrivateSectionParser ATSClInputStream
dengthﬁiniseconds sint (from managers) (from utils) ‘

\
v
‘ ATSCUserToNetwork DownloadModule
(from datatypes)
‘ wHataReceived : boolean
wpid : short
wHownloadld : long
wiransactionlid : long
wmoduleld : int
wmoduleVersion : short

ATSCDataS erviceTables Manager

(from managers)

ATSCDataServiceTable
(from datatypes)
wepbrogram_number : int
whid : short

E¥ATsCDataSeniceTablesManager()

sdf_protocol_version : short 'I G L 'ﬂnOdUIeSIZe. : long
[sion number : byte .ﬂgetAppDescnpnono wmoduleEndian : byte
e - 5Ll .ﬂgetCurremTabIeList() rivateData[] : byte
wsenice_private_data[] : byte P
- - E¥makeCurrent() wPtsIsPresent : boolean
¥ esetNew() wbts : long
wHata[] : byte

Figure 13 Class Diagram for Data Service Extraction

6.5.2 Simulation Management of Data Broadcast

igure 13]shows the diagram for the classes involved in data service parsing within the simulation.
Each downloaded module is stored within a collection inside the ATSCUser ToNet wor kDownl oadManager
object. Also shown are the remaining classes used to store the information from the other ATSC tables in
addition to the Virtual Channel Table as discussed in Section The definition of these classes can be
found in the st b. dat at ypes package.

6.5.2.1 ATSCDataServiceTablesManager

This class, in package st b. manager s, manages a collection of Data Service Tables. Each Data
Service Table describes one data service.

6.5.2.2 ATSCDataServiceTable

This class, in package st b. dat at ypes, contains the information for one Data Service Table, as
defined in the ATSC Data Broadcast standard [ATSC:A90]. One Data Service Table describes the
components of one data service.

6.5.2.3 ATSCDataEventTableManager

This class in package st b. manager s manages a collection of Data Events. It is analogous to the
Data Event Table as defined by [ATSC:A90].

27

6.5.2.4 ATSCDataEvent

This class, in package st b. dat at ypes, contains the information for one event of a Data Event
Table, as defined in the ATSC standard [ATSC:A90]. This class is a data repository only that maps the items
for a data event into the Java types.

6.5.2.5 ATSCUserToNetworkDownloadManager

This class is in package st b. manager s. It manages a module repository for the DSM-CC User-To-
Network Download Scenario, as defined in the MPEG ISO/IEC 13818-1 standard and the ATSC Data
Broadcast standard [ATSC:A90]. It does a different task than managing an ATSC table, therefore, does not
extend ATSCTabl eManager . The functionality implemented is based on a one-layer version of the Data
Carousel.

This class downloads every module of each download scenario. Each time a module (DII+DDB) has
been completely downloaded, it moves from the new module repository to the current module repository.

6.5.2.6 ATSCUserToNetworkDownloadModule

This class contains the description and the data for one module of a DSM-CC User-To-Network
Download Scenario, as defined in the MPEG ISO/IEC 13818-6 and [ATSC:A65] Data Broadcast
specifications. This data structure is designed for merging information contained in DIl and DDB messages.
This is appropriate for DSM-CC Download Scenarios that exclude the possibility of a return channel (the
data carousel scenario and, without return channel, non-flow-controlled download scenario). This class is
part of the st b. dat at ypes package.

6.6 JMF

6.6.1 Hardware Simulation

Describe PCR Manager and tuning here.

6.6.2 MPEGDecoderManager

This standard simulation manager establishes the link between the Java Simulation environment
and the various components simulating the hardware.

Class MPEGDecoder Manager implements some of the interfaces described above. Dat aManager
creates one instance at startup and makes references to it available through its get Devi ce() method
(where Devi ce is the name of the requested interface).

Currently implemented interfaces:

» Vi deoDecoder : establishes a connection with the running PCRManager process and
provides access to the current PCR time.

» Demux: tuning within a stream and low-level audio track selection, via the parser's back
channel. Not Implemented.

e Tuner: Not implemented.

» Ti meBase: provides access to the low-level timeline (PCR) a standard
j avax. medi a. Ti nreBase (JMF) time base. Unlike the raw PCR timeline that can contain
discontinuities, the time base provided is strictly monotonic, even across discontinuities,

28

tuning and other interruption. However it always ticks at the same pace as the currently
displayed video stream.

6.6.3 PCRManagerPullSourceStream

This class wraps the simulation/emulation components into a standard JMF object. In order to
comply with the standard JMF architecture, the r ead() method returns the current PCR time serialized as 8
byte packets.

In addition to the Pul | Sour ceSt r eaminterface, this object also acts as a pass-through to the
objects implementing the Vi deoDecoder, Tuner, Demux and Ti neBase interfaces. If performance is an
issue, it is recommended to use the Vi deoDecoder or Ti meBase interfaces to read the current media time
to avoid serialization overhead -- at the cost of portability, of course.

6.6.4 DataSource

The Java Media Framework uses a Dat aSour ce during the instantiation process. It is associated
during initialization to the "pcr:" protocol; MRLs requesting a "pcr:" object are processed by a new
Dat aSour ce, that parses the MRL and in turn instantiates a Pul | Sour ceSt r eamaccordingly. See the
official IMF Documentation for details.

6.6.5 Handler

6.6.6 DAVIC Controls

API Implementation

Convention: since there are multiple
ways to control the hardware (eg. tuning
and selection) use the player as single
access point to the hardware.

A/V Services (Hardware or simulated)
Tuning Demux PCR Rendering

JavaTV Media API, DAVIC Media API

Figure 14 JMF Support and Extensions

29

REAL-TIME EMULATION

30

COMMERCIAL STB

31

HARDWARE ABSTRACTION LAYER

STBEnvironment

from hwabstract)

DataManager
(from hwabstract)

E8verbose : boolean
ESshowRequestedFlag : boolean

[#s TBEnvironment()
[@igetHwAbstractManager()

[#getHwManager()

[®DataManager()

[®DataManager()
[®sTBChange()
[®addDataManagerListener()
[®adduser()
[®controllerUpdate()
[®createPlayer()
[#findUser()
.getCarouseIM anager()
[®getCommonsSettings()
[#get Container()
[®getCurrentUserList()
.getDBApplicationM anager()
[®getDemux()
[®oetEventinformationTable()
[®getExtendedTextTable()
[#getMainSeniceContext()
[®getPlayer()
[®getProgramMapTable()
[®getRatingRegionTable()
[®getReceiverinfo()
[®getsTBSimManager()
[BgetTimeBase()
[®getUserRegistry()
[®getvideoDecoder()
[®getvirtualChannelTable()
[#get XletManager()
[hidePlayer()
Einitialize()
[®removeContainer()
[®saveData()
[®setCommonsSettings()
[®showPlayer()
[®updateUser()

CarouselManager
(from hwabstract)

[gcarouselManager()
[F¥carouselManager()
[®addListener()

[¥classs$()
[MextractModuleData()

[Heinitialize()
[¥proceedNewModule()
[MremoveListener()

[#uriLookUp()

XletManager
(from hwabstract)

[®xietManager()
[®addRegistryListener()

[BderegisterApplication()

[MdestroyXet()
.getAppIicationlnform ation()

.getAppIicationlnform ation()
[MgetApplicationProxies()
[MgetApplicationProxy ()
[®getRegistry Type()
[SinitXiet()
[®ioadxXlet()
[EBnovexletThread()
[EnotifyListeners()
[®pauseXiet()
[®egisterApplication()
.emoveRegistryListener()
[E#emoveXietThread()
[@startApplication()

[Estartxiet()

[« IetStateChange()

Figure 15 Main HAL Classes

9.1 Introduction

Figure 15| shows the main classes within the hardware abstraction layer. Even though classes
outside of the HAL implement most of the API, a significant portion of the API is implemented by the HAL.
For example, the Application Registry, the manager of DASE Applications, is implemented in the HAL. The
reason for this is that there needs to be a single instance of the Application Registry, and it is therefore
created in the HAL in order provide a consistent view of the registry to all Xlets. In most cases, API
implementation objects do not exist unless an Xlet is running. However, in many cases the implementation

32

object needs to be created before any Xlet runs. Therefore, these objects are created and managed by the
HAL Dat aManager object discussed below.

9.2 STB Environment

Class STBEnvi r onment manages information such STB state information, and User Profile
information. This class communicates with the STB simulation in order to not only retrieve the STB data, but
also to provide updates to the STB. An example of an update would be a new current User.

9.3 HAL Data Manager

The Hardware Abstraction Layer Dat aManager is the access point to all other HAL managers. It is
also the access point for the APl implementation to all data coming from the underlying STB implementation.
This data includes ATSC PSIP information, and MPEG table data. Other STB information is accessed via
the STBEnvi r onnent class discussed in Section

The Dat aManager listens for all STBChangeEvent s (notification of changes to data maintained by
the STB) and notifies any registered listeners of these changes. For example, the APl implementation
classes can register to be notified of changes in the User Registry

9.4 MPEG/PSIP Table Management

VirtualChannel
(from hwabstract)

RatingRegion
(om hwabstract)

Event
(from hwabstract)

HalDataEvent
(from hwabstract)

DataService
(from hwabstract)

ExtendedTextM essage
(rom hwabsract

My itualChannel()

Wy etAccess Controlled()

W etCarrierFrequency ()

My etChannelTSID()

Wy etDelivery System Ty pe()
Mg etDescriptors()

Wy etE TM Location ()

W etHidden()

Mg et ajorC ber()

WRatingRegion()
WyetDimensions()
MyetRatingRegion()

My etRatingRegionName()

Table

My etM in orC hanne INum ber()
-

(from hwabstract)

o etOutOfBand()

Wy etPathSelect()

Mg etProgram Elements ()
g etProgram Num ber()
Wy etSeniceType()
WyetShortName()

Mo etSourceld()

VirtualChannelTable
(from hwabstract)

aRatingRegionTable[]

#RatingRegionTable)
WyetRatingRegion()
WyetRatingRegions ()

WE vent()
WyetDescriptors()
MgetE TM Lo cation()
WyetEndTime()
WyetEndTimeAsDate()
WoetEwentld()
WyetLengthinSe conds ()
WetSource d()
WyetStartTime()

Wyet StartTim eAsDate()
WyetTitleText()

HgetDatald() WDataSenice() WExtendedTextMessage()
Wy etD 0 Hget, & 0

et TM Location() et) " T 0
WoetEndTime() HWoetPrivateData() HWoetNature()

Mg etEndTimeAsDate() Hoetp D]

MoetLengthinSeconds()| | MigetsdProtocolversion()

WyetSourceld() MyetSenicelnfo()

MoetStartTime()

WyetstartTimeAsDate()

WyetTitleText()

EventinformationTable
(from hwabstract)

#E ventinfom ation Table()
g etEve nt()

Mg etEvents()

Mg etEvents()

ATSCRatingRegionTable
(om datatypes)

W irtualChannelTable()
WyetvirtualChannel()
WyetvirtualChannel()
MoetvirtualChannels ()

ATSCVirtualChannel
(rom datatypes)

VirtualChannelTable[]

anEventinform ationTable]

DataEventTable
(from hwabstract)

WDatak ventTable()
MWy etDataE vent()

MgetDataE vents ()
WgetDataE vents ()

ATSCEventinformation
(from datatypes)

ATSCDataEvent
(from datatypes)

DataSenviceList
(from hwabstract)

WDataSenviceList()
MyetDataServices ()
WgetDataServices ()

aDataEventTable[]

aDataSeniceArray[]

ExtendedTextTable
(irom hwabstract)

M xten dedTextTable()
WyetChannelExtende dTextMess age()
Mg etExtendedTextM essage()

ATSCExtendedTextM essage
(rom datatypes)

anExtendedTextTable]]

Figure 16 PSIP Tables in the HAL

9.4.1 Introduction

THIS SECTION NEEDS CLEANED UP...

33

Several classes with the HAL are used to provide access to the MPEG and PSIP table data
accessed from the STB environment. These HAL classes isolate the APl implementation from the format of
the PSIP and MPRG table data as it is retrieved from the STB. Figure 16]shows the class diagram for the
HAL classes that provide access to the PSIP data. Also shown in the diagram are the simulation datatype
classes (those with a name beginning with ATSC).

9.4.2 Virtual Channels

Classes Vi r t ual Channel and Vi rt ual Channel Tabl e are used to provide a standard interface
to the APl implementation classes to access virtual channel information. The Vi rt ual Channel Tabl e
class encapsulates all of the functionality needed to map the virtual channel data format into a format
needed by the implementation. This constructor of this class takes a reference to the simulation manager
class. When porting takes place, the class will be rewritten to access the data in the manner native to the
STB. Therefore, not only does this class map the virtual channel data, it is also responsible for
encapsulating access to the STB.

Class Vi rt ual Channel encapsulates the virtual channel data and provides accessor methods to
retrieve the channel data.

9.4.3 Data Services

The classes used to by HAL to provide data service retrieval are Dat aSer vi ce,
Dat aSer vi celLi st, and Dat aEvent Tabl e.

The Dat aEvent Tabl e class provides an interface to the APl implementation for Data Event
information. All accesses to the underlying hardware/simulation layer is through get XXX() accessor
methods. Overall the class provides the API with access to the simulation data in a convenient and portable
way. The Dat aEvent Tabl e is a list of all the Data Events found in all the Virtual Channels (i.e., the HAL
Vi rt ual Channel Tabl e).

The Dat aSer vi ce class represents the information for a single Data Service as extracted from the
Data Service Table. Class Dat aSer vi ceLi st manages the list of Dat aSer vi ce objects and provides
consistent access to the list.

9.4.4 Event Information

HAL classes Event and Event | nf or mat i onTabl e provide access to the Event Information Table
(EIT). Class Event represents a single event take from the EIT. Retrieval of the event information is
provided by accessor methods.

The Event | nf or mat i onTabl e class provides an interface to the API implementation for Event
information. All accesses to the underlying hardware/simulation layer is through get XXX() accessor
methods. Overall the class provides the API with access to the STB data in a convenient and portable way.

9.4.5 Rating Information

There are several classes involved in providing Rating Region Table (RRT) information. These
classes are Rat edDi nensi on, Rat edRegi on, Rat i ngRegi on, Rat i ngRegi onTabl e, and
Local Rati ngRegi on. The Rat edDi nmensi on class represents an instance of a rating dimension. The
Rat edRegi on class represents an instance of a rating region. Class Rat i ngRegi on represents an
instance of a rating region. A rating region may have multiple rating dimensions.

The Rat i ngRegi onTabl e class provides an interface to the APl implementation for RRT
information. All accesses to the underlying hardware/simulation layer is through get XXX() methods. Overall
the class provides the API with access to the simulation data in a convenient and portable way. The class
makes use of classes Rat i ngRegi on and Di nensi on that reflect the underlying stream structure of the

34

data as described in [ATSC:A65]. The information here represents data that is intended to be index into. For
example, the RRT may contain a Dimension called MPAA that contains a rating table like, G, PG, PG-13,
etc. Meta-data from rating descriptors can index into this data to obtain rating information about a Program
or Service.

9.4.6 Descriptors

9.4.7 Extended Text Messages

The Ext endedText Message and Ext endedText Tabl e classes are used to access the Extended
Text Table (ETT) information. Class Ext endedText Message represents a single entry of the Extended
Text Table. Among others attributes, it holds the extended text message associated with a channel or event
(EIT or DET).

The Ext endedText Tabl e class provides an interface to the APl implementation for Extended Text
Table (ETT) information. All accesses to the underlying hardware/simulation layer is through get XXX()
methods. Overall the class provides the API with access to the simulation data in a convenient and portable
way.

9.5 Data Broadcast

35

CarouselManager
(from hwabstract)

F¥carouselManager()
F¥carouselManager()
WaddListe ner()
F¥classs(
e xtractModuleData()
Enitialize(
F¥proc eedNewModule ()
Wrem ove Listener()
WuriLookUp()

DBApplication Content

(from hwabstract)

[F¥DB ApplicationContent()
Eequals()
BgetAppld()
#WgetAppldDescription()
WgetProgramNumber()
WyetTsid()
#hashCode()

CarouselModule
(from hwabstract)

DBDaseApplicationContent

(from hwabstract)

#CarouselModule()
F¥carouselModule()
S¥classs$()

#get ContentTy pe()
#®yetDownloadld()
®yetModuleData()
WgetModuleld()
WyetModuleVersion()
WyetTSID()

Wy et Uri()
#WtoString()

..*DB DaseApplicationContent()
#DB DaseApplicationContent()
BRclasss()
#getAppldUri()
#yetClassid()
#yetClassPath()
#yetContentType()
#getEntryClasses()
#getLevel()
#getP rofile()
#WgetTaskPriority()
WyetTaskScope()
#WyetTitle()

Figure 17 HAL Data Broadcast Classes

DBApplicationContentFactory

(from hwabstract)

#DBAppIicationContentFactory()
Wb uildAppListFromDST()

F¥classs$()
#WcreateDBApplicationContent()
WextractXletClassDataFrom Tap()

DBApplicationManager
(from hwabstract)

F¥p B ApplicationManager()
[F¥p BApplicationManager()
Eo uildAppListFrom DST(
F¥class$(
’extractApplicationFrom DST()
ﬂextractDas eApplicationFromDST()
.ﬂextractxletclas sDataFromTap()
g etA ppList()
Wy etAppList()
g etDaseA ppList()
Wy etDaseA ppList()
EBnitialize(
F¥oroceedDSTChange()
F¥ roceedNewModule()

95.1 Description of Data Broadcast Classes in the HAL

The data broadcast standard is defined in [ATSC:A90]. Within the hardware abstraction layer, the
broadcast data is managed in a manner that corresponds to the Data Carousel mechanism specified in
[ATSC:A90]. The classes used to manage the Data Broadcast are shown in

9.5.1.1 CarouselManager

The HAL Car ousel Manager manages access to the data carousel resources downloaded by the
underlying STB implementation. This class is designed to be instantiated and used by the HAL
Dat aManager class. It implements URI lookup through Data Carousels in memory and module extraction
based on a Car ousel Fi | eLocat or (locator class internal to NIST implementation).

This class is only used to access Data Carousel modules that are associated with Carousel files or
other data broadcast scenarios. This class does not manage the content associated with broadcast
applications, such as Xlet class files. Car ous| eManager notifies the Car ousel Fi | e classes of changes in
the Carousel file received by the STB environment.

36

9.5.1.2 CarouselModule

This class is a repository for data loaded out of the data carousel. It maps data from the underlying
STB implementation into a form useful to the API implementation. This class stores all the metadata
associated with the Carousel module, such as version, URI, etc.

9.5.1.3 DBDaseApplicationContent

This class is a data repository for storing information associated with a data broadcast application
and related DASE bindings. It extends the DBAppl i cat i onCont ent class with DASE-specific information,
such as Xlet class information.

9.5.1.4 DBApplicationContentFactory

This class creates DBAppl i cat i onCont ent objects from the information contained in the Data
Service Table. There is also a method to create the XI et Cl assDat a object for an Xlet by extracting the
class byte codes from the STB environment.

9.5.15 DBApplicationContent

The parent class that is a data repository for data broadcast applications. It stores information
specified by the data broadcast standard, such as application ID and program number.

9.5.1.6 DBApplicationManager

The HAL DBAppl i cat i onManager manages a list of applications in the ATSC Data Broadcast
senseﬂas extracted from a Data Service Table. It gives read access to that list with a couple of methods
(mainly used by the APl implementation of the j avat v. servi ce. sel ecti on package). It also transmits
notifications and, when needed, application resources to the Xl et Manager . For example, when all
application resources of a new application are received or when an application disappears from the DST.

! Defined in ATSC A/90 specification.

37

9.6 Application Management
Application . . .
rastry [DASE Procedural Applications | &reuselrie
Event
Regi stryLi steners Carousel Fi |l eLi steners
API call
h 4
DASE APl Implementation
Changeli steners CarouselFile
]
ChangeEvent @ |
4
DatalManager Data Carousel Change
@ @ URI lookup,
@ Data
@ Extraction
Data Carousel or
DST Change
A 4 V A 4 ‘V
- IV|XIet (Alslplication Kiﬂarousel <
anager Application data anager anager
& signaling
PSIP Module
Application Data Data Data
Extraction STBChange Extraction Extraction
Event
A

Set-Top Box Simulation

)

L egend:

1]

User Input

— Thin arrows indicate access calls.

» Thick arrowsindicate event notifications.

1]

Transport Stream

1: STBEnvi r onnent . get Hwanager ()
2: Dat aManager . get Xl et Manager ()

3: Dat aManager . get Appl i cati onManager ()
4: Dat aManager . get STBSi mvanager ()

5: Dat aManager . get Car ousel Manager ()

Figure 18 HAL Data Broadcast Interactions

38

9.6.1 Introduction

This section gives a more detailed description of all actions taken by both Simulation and HAL when
receiving an application, from parsing the Transport Stream to launching Xlets and notifying API
components. shows the interactions and relationships between the major components of the HAL
involved in Data Broadcast application and Carousel management.

The context is a simple use case, actually the only one currently implemented by our Data
Generator on one side, and our DASE PA platform on the other side. Basically, a new application is coming
through the Transport Stream. Here are some characteristics:

e Everything is in one Transport Stream (no use of NRT).

» Data Carousels carry all application resources.

The steps involved in processing the DST are as follows:

1. A new DST is received and parsed by the Simulation, which in turns notifies the HAL. The HAL then
examines the DST: if there’s no new application (since previous DST in the same PMT Program),
the process stops there.

2. If there is a new application, HAL checks if all resources are present by going through the Tap loop
(arrows @, @, and ® in w For each Tap:

2.1. Arrow ®: The HAL retrieves the PMT Program corresponding to this Data Service thanks to the
pr ogr am nunber field in the DST. In that Program, the loop of elementary streams is then
searched for an Association Tag Descriptor that matches with the associ ati on_t ag of the
Tap.

2.2. Arrows @ and @: Using the downl oad_i d field of the Tap, the HAL locates the Data Carousel
in the buffer. If the Tap points to an entire Data Carousel, HAL checks that Data Carousel has
been completely received.

2.3. Arrow ®: If the Tap points only to a single module, the HAL checks if that specific module has
been received (Download Info Indication (DII) message and associated data).

3. If all resources indicated by the DST for the new application have been received, the HAL considers it
as completely received and starts launching its entry points (Xlets).

4. In parallel to the treatment of the DST, Data Carousel modules are treated in a straightforward way.
Each time a DIl and its associated data are received, the Simulation considers the module as
received and gives a notification to the HAL, which in turns notifies API-level objects listening for a
change to that module (new module or new version of an existing module).

Also shown in Eigure 18|is the Carousel Manager. When the HAL Dat aManager needs to access
modules for a downloaded file (the data broadcast scenario) it relies in the Car ousel Manager to relay
the module data from the STB environment.

39

DB ApplicationContentFacto
XletManager XletClassData pp ry

(from hwabstract)
(from hwabstract) (from hwabstract)

[BclassBytes]] : byte

[®xietManager() utoLaunch - boolean k- [EFDBApplicationContentFactory ()
[®addRegistiyListener() e [#ouildAppListFrom DS T()
[#deregisterApplication() xietClassData() [Sclasss() o
[®destroyXlet() PBequals) [#createDBApplicationContent()

.getAppIicationInform ation() .extractXIetCIassDataFrom Tap()
.getApplicationlnformation() ‘

[#getApplicationP roxies ()
[#getApplicationProxy() ‘
[®getRegistryType()

[Hinitxiet() DBApplicationManager ‘
.oadXIet() (from hwabstract) ‘
[##moveXietThread()
[#notifyListeners() \ [@¥DBApplicationManager() ‘
[®pauseXiet() [@¥DBApplicationManager() \V4
.egis terApplication () !)uiIdA ppListFrom DST() DBApplicationContent
.em oveRegistryListener() -class$() (from hwabstract)
@ emoveXietThread() [E¥extractApplication From DST()
.startAppIication() !extractDaseAppIicationFrom DST() .DBAppIicationContent()
[®startxiet() [§¥extractXletClassDataFrom Tap() [®equals()
[#letstateChange() [®getAppList() [®getAppld()
‘ \ [®getaAppList() [#getAppldDescription()
[®getDaseAppList() [#getProgramNumber()
‘ \ [®getDaseAppList() [HgetTsid()
\ EBnitialize([#hashcode()
‘ [@¥proceedDSTChange()
‘ \ |E¥proceedNewModule()
\
|
\

v \

XletClassLoader

XletThread
(from hwabstract)

(from hwabstract)

X etThread() e
DBDaseApplicationContent
[®xletClassLoader() [®appstateChanged() pp

[®XletClassLoader() [fidestroy Xlet()
[®findClass() [Hequals ()
EEinitialize() [HoetAppState()
[®getAppStatessS upported()
[#getAppStatus()
.getAppIicationInform ation()
[®getApplication Proxy ()
[#getCurrentStateName()
[®getServiceContext()
[#getXletContainer()
[®getXietLocator()
[®getxietName()
[nitxiet()

[sActive()
[®pauseXiet()
[#resumeXiet()
[#run()

[§setCurentstate()

(from hwabstract)

.DBDaseAppIicationContent()
.DBDaseAppIicationContent()
[F¥classs()
[®getAppldUri()
[#getClassid()
[#getClassPath()
[#getContentType()
[®getEntryClasses()
[#getLevel()
[®getProfile()
[®getTaskPriority ()
[#getTaskScope()

[HgetTitle()

Figure 19 Class Diagram for Xlet Management
9.6.2 Xlet Management Classes

Figure 19|shows the classes involved in Xlet management. The following sections describe each
class in more detail.

40

9.6.2.1 XletManager

The HAL Xl et Manager manages Xlets (load, init, start, pause and destroy), based on the signals
and aggregated data it receives from the DBAppl i cat i onManager . It implements
ort.atsc. Appl i cati onRegi st ry, which includes managing and notifying a list of
org. at sc. Regi stryLi st eners. Xlets are controlled via the XI et Thr ead object that is created by the
Xl et Manager . The object centralizes the information for the Xlet, such as the Xlet's state, resource
requirements, and other information.

9.6.2.2 XletThread

This class Centralizes information about the Xlet, such as its current state and status as maintained
by the Xlet itself, the proxy objects, and the Locator for the Xlet. It is sub-classed from Thr ead and runs as
a separate thread in the JVM.

9.6.2.3 XletClassLoader

This class implements the class loader for Xlets. The XI et Manager creates an object of this class
for each Xlet. This class is a sub-class of j ava. | ang. G assLoader . The main responsibility of this class
is to create the Java classes from the byte codes that were downloaded for the Xlet's classes. The
delegation model is used where the parent class loader attempts to load the classes before calling on the
Xlet class loader. Therefore, this class loader loads only classes that were downloaded by the system. The
system class loader loads all other classes, such as the APl implementation classes and P-Java classes.

Class Xl et O assLoader overrides method fi ndCl ass() in order to load the Xlet classes. This
method searches the private collection of byte codes downloaded for the Xlet. If the class is not found, a
Cl assNot Found exception object is thrown.

9.6.2.4 XletClassData

This class is a repository for the byte codes of a class that is part of an Xlet. It also stores
information to indicate whether the class is the entry and launch point for an Xlet.

9.6.3 Xlet Resource Loading

Figure 19 shows the classes involved in Xlet loading and management. In the HAL, an Xlet is a form
of Data Broadcast application. Therefore, loading of the Xlet's resources (class files, etc.) relies on the Data
Broadcast classes introduced in Section This section describes how these classes interact with the
Xl et Manager and Xl et Thr ead classes.

Need more text here....

9.7 JMF Player

9.7.1 Abstract Decoder

41

Audio ——> [ﬂ

» ATSC
Tuner » Demux » Generic
| MPEG -
Decoder |] Renderer > D
v
PCR ,
Clock > Timer
Video

Figure 20 Set-Top Box Decoder Model

illustrates the general architecture of a set-top box hardware decoder. Although actual
implementation choices may differ, a complete system should provide all the shown services, either in
hardware or software (for example, many low-cost PC-based DTV decoders decode the AC-3 audio tracks
in software).

In order to simplify porting of the Prototype Implementation to other platforms, we identified the following
core services:

« Tuner: tuning services to select a specific transport stream.

» Demultiplexer (Demux): demultiplex the MPEG stream into elementary streams and route them
to other blocks.

e Audio: audio decoding.
+ Video:
o Decoding of the MPEG video stream

o Program Clock Reference: hardware clock phase-locked to the PCR timestamps within
the video stream.

o Timer: programmed alarm service associated with the clock.

o Rendering.

This model identifies the lowest common denominator to low-level functions used by the Prototype
Implementation, for convenience only. It is not intended to replace more extensive APIs such as JavaTV.

42

9.7.2 Java Interfaces

VideoContinuity Event

; <<Interface>> <<Interface>> <<Interface>>
(e ep) Vide oContinuityListener VideoDecoder Tuner

EEcontinuityCount : int (from api) (from api) (from api)

[E8videoContinuityEvent()| | g ontinuity Update([BaddContinuityLis tener() [getTsID)

Eztgz:tr::n:(l)tycoumo [#getComponent() [®getTSIDLIst()
[getContinuity Count() [#next()
[#getP CRNanoseconds() [previous()
[#getPCRValue() [#setTsSID()
[®isvalid(
-removeContinuityListener()

<<Interface>> <<Interface>> AlarmTimerException AlarmTimerEvent
AlarmTimerListener AlarmTimer (fom api) (fom api)
(from api) (from api) Ed - int
.AIarmTimerException() Ejate :long
[cancel() [Hcancel()
[Enotify [Enotity () %A 1am TimerEvent)
[®A lam TimerEvent ()

<<Interface>>
Demux
(fom api)

<<Interface>>

[#getATS CinputStream() AudioDecoder

FeatureNotAvailableException

metAudiOPIDO (from api) (from api)
[#getElementaryInputStream ()
[#getvideoP1D() Wloetvolume) [#F catureNotAvailableException()

[outeElementaryStream ()
[#setAudioP1D()
[MsetvideoP1D()

s ctvolume() [catureNotAvailableException()

Figure 21 Java Interfaces for Decoder Components

The abstract model described in the previous section translates to a set of abstract hardware
interfaces declared in gov. ni st. hwabst ract . api . Continuity (breaks in the PCR timeline) and Alarm

events are handled via the usual Listener-Event mechanism. See the Javadocs for details(NO, do it

here -WJS).

43

DataM anager

Handler

DataSource

SourceStream

A 4

MPEGDecoderManager

44

DAVIC
Controls

Portable

: PCR

Smulation

Media

10.

10.1 Locators

APl IMPLEMENTATION

LocatorClass

<<Interface>>

[MoetTransportStreamID()

[MoetType()

[MtoExternalForm ()

[MhasMultipleTransformations()

<<Interface>>

<<Interface>>

(from locator) ATSCLocator MPEGLocator Locator
(from si) (from si) (from locator)
[MocatorClass() o
[MigetEventiD() — ‘etEventlD() ‘etProgram Number() .1asMuItipIeTransformations()
[BigetProgramNumber() [MoetsourcelD() [MoetTransportStreamID() [oE xternalForm ()
[MyetSourcelD()

SenviceLocator
(from locator)

.1etworkDependenlLocator : boolean
@EmajorChannelNumber : short
@EminorChannelNumber : short
-:arrierFrequency : long
@channelTSID : int
@EprogramNumber : int
WseiceType : byte
@sourceld : int

-19|iverysystemType int

s enviceLocator()
[MsenviceLocator()
[MsenviceLocator()
[Mequals(
‘etCarrierFrequency()
[MyetDeliverySystemType()
[MyetDescriptors()

[MyetE ventiD(

[MyetM ajorChannelNumber()
[MyetMinorChannelNumber()
[MyetProgramNum ber ()
[MyetseniceType(
[MetshortName()
[MyetsourcelD(
[MyetTransportStreamiD()
[MyetType()
[MyetvirtualChannel(
-'|asMuItipIeTransformationso
[MigetE ventiD(
[MigetProgramNum ber()
igetSourcelD()
[WigetTransportStreamID()
[MoExtemalForm()

SerniceComponentLocator
(from locator)

.ServiceCom ponentLoc ator()
‘erviceCom ponentLoc ator()
[MyetElem entaryPID()
[MyetStreamType()

[MyetType(

CarouselFileLocator
(from locator)

s DirectoryLocator : boolean
@iduriBased : boolean

[carouselFileLocator()
[®carouselFileLocator()
[®carouselFileLocator()
[Mequals()
[MgetCanonicaluri()
[MyetDirectory Contents()
[MyetDownloadid()
[MyetModuleld()
.getTransportStream ID()
[MgetType()

[Mgeturi()

.1asM ultipleTransformations()

Einitialize()

[MisLiduriBased()
[isLocatingDirectory()

s LocatingFile()
[oE xternalForm ()

XletLocator
(from locator)

[XietLocator()
[MXietLocator()
[MWequals()
[MyetClassld()
[MWyetEventiD()
[MyetProgramNumber()
[MyetSourcelD()
[MyetTransportStreamID()
[MyetType()
[MyetxietThread()
.1asM ultipleTransformations()
[etXietThread()

[toE xternalForm ()

Figure 22 Locator Implementation

45

EventLocator
(from locator)

D
\

\
\

UnboundLocator

(from locator)

'etworkDependentLocamr : boolean
-;arrierFrequency : long
WchannelsID : int

Wsourceld : int

@k entid : int

WdeliverySystemType : int

[entLocator()

[\entLocator()
[Mequals()
‘etCarrierFrequency()
.getDeIiverySyslemTy pe()
[MgetDescriptors()
[MyetEventID()
[MyetProgramNumber()
[MyetsourcelD(

[Myet Title Text()
[MyetTransportStreamID()
[MoetType()
[MyetvirtualChannel()
.1asM ultipleTransformations()
Mg etE e ntiD()

g etProgramNum ber()
[MigetSourcelD()

[Mig etTransportStreamiD()
[MtoE xternalForm()

[MunboundLocator()
[#hasMultipleTransform ations ()
[®toExtemalForm()

Locators are widely used throughout the JavaTV and DASE APIs for communicating implementation
dependent information about a resource in an independent manner. Eigure 22 shows the class diagram for
the implementation of Locators in the DASE RI.

There are two forms of Locators in the implementation. One form is a Locator that contains
information about a specific resource, such as Service or Xlet. This form of Locator is also referred to as a
bound locator. The other form of Locator is unbound and does not contain any information about a resource,
but may represent a resource not yet mapped into a specific stream component, for example. A Collection of
bound Locators can be obtained from a unbound Locator in many instances.

46

10.2 The Management API

<<Interface>>
<<Interface>> XletContext
ObjectStates ; et
(from management) (fompED)

[#addstateChangelListener() ‘ettl)f(leéPrt:pert)(;O
[#getCurrentState() =:J)t:fyP strszg 0
[#getCurrentStatus() -'esu)r/neRe Lest)
[#igetstatesSupported() q
[#emovestateChangelListener()

A

<<Interface>>
‘ ApplicationProxy

‘ (from application)

<<Interface>>
ApplicationContext
(from application)

[#igetDataSeniceDescription()
[#istateChanged()

7

ApplicationContextClass
(from application)

[#yetseniceContext()
[#stateChanged()
‘etDataS erviceDescription()
[ByetxietProperty()
[#hotifyDestroyed()
[#notifyPaused()
[#resumeRequest()

XletThread

(from hwabstract)

EBappstate : int
EEappstatus : int
EEappSupportedState : short

E8ap pSupportedStatus : short

[#appstateChanged()
[#yetappstate()

[#yetAppstatesSupported()
[Byetappstatus()

| [#getLocator()
| [#esume()
Receiver [Fstop(
(from system) ‘USpend()
[#clearAlarm()
[#getAdministrativeState() ‘
[#getAlarm Status ()
[#getAvailability Status () <<Interface>>
‘etCurrentState() ApplicationComponentPresenterProxy
[#getCurrentStatus() (from application)
[#getoperationalState()
[#getProceduralStatus()
[#getstatesSupported() 4
[#getUsageState() |
ApplicationComponentPresenterProxyClass
(from application)
[#getAdministrativeState()
STBEnvironm ent [#oetAlarm Status()
(from hwabstract) ‘IearAlarm()
[#getCurrentState()
[TBEnvironm ent () metCurrenFStatus()
[ByetHw AbstractManager() [BgetoperationalState()
[MoetHwManager() [#getProceduralStatus()
[#igetstatesSupported()
[#getusageState()
N\

FUTURE: Currently, DataManager provides Recevier info, but
this will change to have STBEnvironment do it by moving
methog getReceiverinfo from DataManager to STBEnvironment.

Figure 23 Management APl Implementation

The Management API, specified in package or g. at sc. nanagenent , is implemented by various
packages inside the NIST RI. Also, Xlets themselves can support the Management states and statuses via
the Appl i cat i onCont ext object. The values of the states and statuses reported by the Xlet are
maintained in the XI et Thr ead object associated with the Xlet. Section §.6.2.2]discusses the X et Thr ead

47

class. Figure 23]shows how the state and status information for an Xlet is maintained within the API
implementation and how that information is retrieved via the Appl i cat i onPr oxy interface.

Several classes in the NIST RI provide support to classes that implement the
nj ect St at es interface in order to provide a minimal level of support for Management as suggested by
the DASE PAE standard. For example, HAL class STBEnvi r onment maps information from the underlying
STB environment into Management states and statuses. The class or g. at sc. syst em Recei ver, which
implements interface Obj ect St at es, retrieves this information in order to support the Cbj ect St at es
interface. The actual mapping of STB states and statuses takes place in the STBEnvi r onnent .

10.3 Service APIs

10.3.1 Overview

The Service APl package gives the Xlet access to the Service Information (SI) database and the
mechanism to tune to (select) individual Services. The parent javax.tv.service package defines what a
Service is and provides the access class SIManager to discover the available Services. Sub-packages of
javax.tv.service include navigation that allows the Xlet to navigate the collection of Services. The guide
package provides detailed information about the Services suitable for an Electronic Program Guide. Service
selection provides the mechanisms to tune to and start selected Services. The transport package isolates
some of the specific delivery media information (currently MPEG-2).

10.3.2 Asynchronous Service Information Retrieval

The Service package provides mechanisms to retrieve data from the S| database asynchronously.
Methods that begin with the retrieve prefix provide this asynchronous data retrieval. The NIST
implementation handles asynchronous methods by creating a class that is a separate thread. The initial call
to the retrieve method will create and start the new thread. The call will then return immediately. The
asynchronous thread will retrieve the data from the Sl database and will notify listeners of the outcome.
(Provide generic code for the general solution).

10.3.3 Package javax.tv.service

Specification Implementation Mapping Level
Interfaces

DeliverySystemDef

Service gov.nist.service.ServiceClass
ServiceComponent gov.nist.service.ServiceComponentClass
ServiceMinorNumber extended by javax.tv.Service
ServiceNumber extended by javax.tv.Service
SIChangelListener

SIElement extended by many interfaces

SIRequest

SIRequestor

SIRetrievable

Classes

DeliverySystemType

ReadPermission

ServicelnformationType

ServiceType

SIChangeEvent

SIChangeType

48

SIRequestFailureType

StreamType

Exceptions

SIException

Table 4 Service Implementation Mapping
10.3.4 Package javax.tv.service.guide
10.3.4.1 Guide UML Diagram

The root for obtaining guide information is the ServiceDetails object. The ServiceDetails object will
contain a ProgramSchedule that provides the mechanisms for retrieving ProgramEvents. ProgramEvents
are retrieve asynchronously. A Xlet will make a call to the ProgramSchedule object to obtain certain events.
This call will return immediately with a SIRequest object. The SIRequest object is used to later retrieve the
desired information. ProgramSchedule relies on a set of asynchronous retrieve classes to handle the data
retrieval. See section X.X on the implementation of asynchronous methods.

49

<<Interface>>

Figure 24 Guide UML Diagram

The data used to implement Program Events is obtained from the HAL EventinformationTable and
Event classes. The EventinformationTable (EIT) contains the aggregate of Events across Virtual Channels.
Events can be retrieve from the EIT via the source_id, which will return all the Events for a given virtual

channel. Events can also be retrieved individually with a source_id and event _id.

10.3.4.2

50

Specification to Implementation Mapping

<<Interface>> ProgramEventDescription
ProgramEvent (from guide)
(from guide)
[#getProgram EventDescription()
‘etDuration
‘etEndTime(z) ProgramEventClass 4
[oetname() — (from guide)
[MyetRating() }
[Wyetsenice()
‘etStanTime() ProgramEventDescriptionClass
[Mretrieve Components() (fomjouide)
[retrieve Des cription()
Event
(from hwabstract)
<<Interface>>
<<Interface>> ProgramSchedule [vent(X Eventinform ationTable
ContentRatingAdvisory (from guide) ‘etz:;cl_nptor.s()o (from hwabstract)
e) et ocation
‘etEndTime() .
PEaddListener() [ietEndTim eAsDate([ventinformationTable()
‘xce.eds()) [MremoveListener() et ventid() [HgetEvent()
‘etD!mensmnNames() [MretrieveCurrentEvent() PgetLengthinSeconds([HigetEvents()
‘etDlsplayTextO [BietrieveEvent() Bibetsourceid) [MoetEvents()
‘etRat!ng Level([WretrieveFutureE vent() [Higet StartTime ()
[BoeRatingText) [MetrieveFutureEvents() [MgetStartTimeAsDate()
4 [WretrieveNextEvent() [HietTitleText()
RetrieveEvent
\ (from guide)
ContentRatingAdvisoryClass \ e =
(from guide)
/ RetrieveCurrentEvent
\ (from guide)
ServiceDetailsClass \ /
(from navigation)
/ — RetrieveComponents
-
(from guide)
{ ProgramScheduleClass |~ — ~ ~
(from guide) -
R N RetrieveFutureEvent Thread
(from guide) (from lang)
<<Interface>> \ ~ .
SenviceDetails \ RetrieveDescription
(from navigation) AN (from guide)
\ ~
[MoetLongName() —~
[MyetProgramSchedule() \ RetrieveFutureEvents
[MyetSenice() ~ (from guide)
[MyetSeniceType() ~—
[MretrieveComponents () ~
[etrieveseniceDescription() RetrieveNextEvent
(from guide)

Specification Implementation Mapping Level
Interfaces
ContentRatingAdvisory gov.nist.service.guide.ContentRatingAdvisoryClass
ProgramEvent gov.nist.service.guide.ProgramEventClass
ProgramEventDescription gov.nist.service.guide.PrgoramEventDescriptionClass
ProgramSchedule gov.nist.service.guide.ProgramScheduleClass
ProgramScheduleListener Place holder for new version of specification
Classes
ProgramScheduleChangeEvent
ProgramScheduleChangeType Place holder for new version of specification
ProgramScheduleEvent Place holder for new version of specification
Table 5 Guide Implementation Mapping
10.3.4.3 Implementation to ATSC/MPEG Table Mapping
API Object Attribute Implementation Simulation ATSC
ProgramEvent name gov.nist.service.guide EIT

.ProgramEventClass,

gov.nist.hwabstract.E

ventinformationTable,

gov.nist.hwabstract.E

vent
ProgramEvent duration EIT
ProgramEvent startTime EIT
ProgramEvent endTime EIT
ProgramEvent contentAdvisory content_advistory

descriptor
ProgramEvent description EIT
ProgramEvent components VCT (service
location descriptor)

RatingDimension name RRT
RatingDimension # of Levels RRT
RatingDimension levelDescription RRT

ContentRatingAdvi | dimensionName | ContentRatingAdviso content_advisory d
sory ryClass escriptor
ContentRatingAdvi | ratingValue content_advisory d
sory escriptor
ContentRatingAdvi | ratingText content_advisory d
sory escriptor
ContentRatingAdvi | displayText content_advisory d
sory escriptor

Table 6 Guide Implementation to Transport Mapping

10.3.5

10.3.5.1

Overview

Package javax.tv.service.navigation

The navigation package provides the mechanisms to conveniently browse through the available
Services list. It arranges Services as collections and provides information about the Services.

51

10.3.5.2

Specification to Implementation Mapping

Specification

Implementation Mapping

Level

Interfaces

CAldentification

FavoriteServicesName

RatingDimension

gov.nist.service.navigation.RatingDimensionClass

ServiceCollection

gov.nist.service.navigation.ServiceCollectionClass

ServiceDescription

??

ServiceDetails

gov.nist.service.navigation.ServiceDetailsClass

Servicelterator

gov.nist.service.navigation.ServicelteratorClass

ServiceProviderinformation

optionally implemented by ServiceDetails. Not implemented in the
NIST implmentation.

Classes

LocatorFilter

gov.nist.service.navigation.LocatorFilter

PreferenceFilter

gov.nist.service.navigation.PreferenceFilter

ServiceFilter

gov.nist.service.navigation.ServiceFilter

ServiceTypeFilter

gov.nist.service.navigation.ServiceTypeFilter

SIElementFilter

gov.nist.service.navigation.SIElementFilter

SIManager

gov.nist.service.navigation.SIManagerClass, supported by
RetrieveServiceDetails, RetriveService, RetrieveEvent

Exceptions

FilterNotSupportedException

NoSuchServiceException

SortNotAvailableException

Table 7 Navigation Implementation Mapping

10.3.6

10.3.6.1 Overview

Package javax.tv.service.selection

The Service Selection API allows applications the ability to control the presentation of Services in a
simple high-level way. It allows the presentation of a Service without the application having to know the

details of the Service.

52

stop()

sdect() j presentation 1 (success)
'L pending
stop() select() :
not presenting presenting J7
] destroy()
destroy() (| destroy()

> destroyed <
{)

Figure 25 Service Context State Diagram

The application requesting a Service Selection first creates a Ser vi ceCont ext object that will
control the selection and presentation of Services. Through the Ser vi ceCont ext the application can select
Services and Service Components with the use of the Locators. Once the sel ect () method is called the
component locators are discovered and the appropriate component presenters are instantiated to present
the components.

The Service Selection package gives a DASE application the ability to select a Service or a
component within a Service for presentation. If a Service is selected, then all components of that Service will
attempt to be presented. Services are presented and managed in a Service Context. There can be multiple
Service Contexts in a DASE receiver; however, the NIST Set-top box limits this to one Service Context,
which can be created by the DASE application or the implementation. The initial Service Context is created
by the implementation. This implies that when a DASE application begins to execute it can obtain a
reference to the implementation Service Context for controlling the presentation of Services.

A Service or Service Component is selected by first obtaining a reference to a Service Context
object. The DASE application can create a Service Context object via the Service Context Factory or by
obtaining a reference to the implementation Service Context. Using the Service Context the DASE
application can call the select method with a Service Locator or a Service Component Locator.

The Service Context Class manages the presentation of Services. The select and stop methods
control the starting and termination of Services. The Service Context uses the Service Context State object
to maintain its state. Table [Selection State] describes the possible states of a Service Context. Once a
Service or Service Component has been selected, the task of presenting it is handed off to the Service
Component Presenter class. The call to select returns to the DASE application, Service Component
Presenter is an asynchronous class.

The Service Component Presenter class first determines the intent of the DASE application by
examining the locators and the state of the Service Context. If the Service Context is in the
NOT_PRESENTING State, then SCP attempts to present the Service Components represented by the
Locators. SCP determines the resources needed and attempts to retain them. For example, if one of the
Locators map to an elementary video stream, then access to the Player is requested.

53

Ser vi ceConponent Present er is a helper class for the sel ect () method in Ser vi ceCont ext .
This is an asynchronous class that initiates the presentation of a Service or individual
Ser vi ceConponent s. Based on the locator(s), Ser vi ceConmponent Pr esent er selects the appropriate
“engine” to present the Ser vi ceConponent .

Ser vi ceConponent Pr esent er is an asynchronous class that determines the selected Service
Components and plays them in the appropriate Handler, whether it is a JMF Player or Xlet presenter.

10.3.6.2 Access to the IMF Player

The Service Component Presenter will often need to obtain access to the JMF Player in order to
select components mapping to video and audio streams. Access to the Player is obtained in the HAL
Dat aManager .

The Dat aManager creates a Player (i.e., Ser vi ceMedi aHandl er) object. It does this by calling
the cr eat ePl ayer () method in the j ava. medi a. Manager class. The cr eat ePl ayer () method takes
a Medi aResour celLocat or (MRL) object that is a URL that points to the actual system (i.e., real hardware)
player. Manager . cr eat ePl ayer () searches the Locator path looking for a player implementation that
matches the one indicated by the URL. In the case of the NIST R, it is the Handler implementation class. So
the Player in Dat aManager is really an instantiation of the Handler class in the HAL. Handler implements
Ser vi ceMedi aHandl er, so the Player is a Ser vi ceCont ent Handl er . A Ser vi ceCont ent Handl er
object is accessible by the Xlet for manipulation of the JMF Player.

10.3.6.3 Policy and Issues

Future: Complete this table

Current State | Action Outcome Result New State Comments
Presenting select() Success NormalContentEvent Presentation Pending

Presenting select() Success AlternativeContentEvent | Presenting

Presenting select() Failure SelectionFailedEvent Presenting

Not Presenting select() Success NormalContentEvent Presentation Pending

Not Presenting select() Success AlternativeContentEvent | Presenting

Not Presenting select() Failure SelectionFailedEvent Presenting

Destroyed select() None llegalStateException Destroyed

Table 8 Service Context State Table

If the implementation restricts the number of ServiceContext objects to one and an application that
is already running:

Scenario: Another application tries to create a Ser vi ceCont ext object
Solution 1: the Ser vi ceCont ext creation fails

Solution 2: may succeed to get the Ser vi ceCont ext object that is currently used by the
previous application. Then the Ser vi ceCont ext object sends such as
Present ati onTer m nat edEvent to the previous application. Previous application should be
terminated by itself.

54

Question: Should the new application kill the previous application? Is this the responsibility
of the Application Manager?

<<Interface>> <<Interface>>

ApplicationComponentPresenterProxy SenviceContentHandler

(from application) "> (from selection)

b
\

ApplicationComponentPresenterProxyClass

(from application)

[HigetseniceContentLocators ()

MediaSelectControlClass

(from x_pcr)

ServiceContextClass

(from selection)

EprogramNumber sint Handler

(fom x_pecr)

I

v

<<Interface>>
ServiceContext

s eniceContextClass()
[®addListener()
.addServiceContentHandler()
[HWcreatePlayer()

[@destroy()

(from selection)

[®addListener()
[Wdestroy()

[®getSeniceContentHandlers()

BBoetsenicelocat [#getAddMedialocators() P T

-reemo(\alravll_(i:sete(:]?:()oro [#getkeepMedialocators() SeniceMediaHandler

PEselect() ugetMediaLocators() (from selection)
etMergedMedialocators

[Wselect() N 9 0

[®stop()

[®getPlayerHandler()
ugetPIayingM ediaLocators() /
-getRemoveM ediaLocators()
-getServiceCOm ponentLocators()
.getServiceContentHandIers()
[®getseniceContextState()
[WgetsenicelLocator()
ffgetxietHandler()
getXletLocators()
=isActiveCom ponents () S~ .ServiceCom ponentPresenter()
[Enotify Listeners () @#addMediaComponents()

ServiceContextFactoryClass

(from selection)

ServiceComponentPresenter

(from selection)

[®seniceContextFactoryClass()
[®createServiceContext()

.getServ,ceContext() @relcaseseniceContextResources() o layMediaComponents()
[@getserviceContexts() [BremoveListener() #postseniceContextEvent()
[#removeSeniceContentHandler() [#presentXietComponents()
[Wselect() [#removeMediaComponents()
[®select() [run(
SeniceContextState [®setActiveComponents() [etMediaSelectControl()

(from selection)

f#@setPlayingMediaLocators) [#startNewComponentSelection()

[@setPresentingSenice() #updateCurrentComponentSelection()
[#setseniceComponentLocators()
[s etseniceContextState()
[#setseniceLocator()

s top()

[#updateMedialLocators()

[g¥seniceContextState()
[®getstateName()

[#tostring()

Figure 26 Service Selection UML Diagram

10.3.6.4 Service Selection UML Diagrams

The Service Selection implementation classes are shown in figure 26

55

10.3.6.5 Specification to Implementation Mapping

Specification

Implementation Mapping

Level

Interfaces

ServiceContentHandler

gov.nist.hwabstract.

ServiceContext

gov.nist.service.ServiceContextClass

ServiceContextListener

Implemented by DASE Application

ServiceMediaHandler

gov.nist.hwabstract.

Classes

AlternativeContentEvent

NormalContentEvent

PresentationChangedEvent

PresentationTerminatedEvent

SelectionFailedEvent

SelectPermission

ServiceContextDestroyedEvent

ServiceContextEvent

ServiceContextFactory

ServiceContextPermission

Exceptions

InsufficientResourcesException

InvalidServiceComponentexception

ServiceContextException

Table 9 Service Selection Implemetnation Mapping

10.3.6.6 Implementation to ATSC/MPEG Table Mapping

API

Implementation Mapping

Tables

ServiceComponent

gov.nist.hwabstract.

ServiceContext

gov.nist.service.ServiceContextClass

ServiceContextListener

Implemented by DASE Application

ServiceMediaHandler

gov.nist.hwabstract.

AlternativeContentEvent

NormalContentEvent

PresentationChangedEvent

PresentationTerminatedEvent

Table 10 Service Selection Implementation to Transport Mapping

10.3.6.7 Notes and Issues

10.3.7 Package javax.tv.service.transport

10.3.7.1 Overview

10.3.7.2 Specification to Implementation Mapping

Specification

Implementation Mapping

Level

Interfaces

56

Bouquet Not required for ATSC implementation
BouquetCollection Not required for ATSC implementation
Network Not required for ATSC implementation
NetworkCollection Not required for ATSC implementation
Transport

TransportStream

TransportStreamCollection

Classes

BouquetCollectionChangeEvent Not required for ATSC implementation
NetworkCollectionChangeEvent Not required for ATSC implementation
TransportStreamCollectionChangeEvent

Table 11 Transport Implementation Mapping

10.3.7.3 Notes and Issues

javax.tv.service.transport. Network and Net wor kCol | ect i on are not required for
ATSC implementations. j avax. t v. servi ce. transport. Bouquet and Bouquet Col | ecti on are not
required are not required for ATSC implementations. These classes are part of a generic JavaTv
specification that is used in other specification, such as DVB.

57

10.4 User and Preference Management
UserRegistryCl
seruzg’;wlsusr:/n ass HwPreferences
<<Interface>> (from hwabstract)
UserRegistry
WUserRegistryClass()
(fom user) <) Pref
WaddRegistryListener() i eren(I:es())
5 e ateUser() % reateFavoriteChannelList()
#reateUser() e x ceedsRatingCeiling()
R — leteU R . .
#deleteUser()] JiiclcteUser) ®favoriteChannelListExists ()
®yetCurrentUser() MigetCurrentUser(Wy etFavoriteChannelList()
tRegistryT
#yetUser() :Z:tu:glr?) VTypeo ®yetPreferredLanguages()
etUserNames tRatingCeili
:g 0 #WyetUserNames() Il tRatingCeiling()
etCurrentUser() . . ®etPreferredLanguages ()
Wrem oveRegistry Listener() . -
. c:CurrentUser(% etRatingCeiling()
IrrentPrefe X
rentbre erences/“’\ FavoriteChannelsClas s PreferredLanguageClass
‘\ (from preferences) (from preferences)
|
<<Interface>> ‘
- -currentUser\ | | ‘ ‘
serProfile
HwUser
(from user) UserProfileClass ‘
trom usen (from hwab stra ct)
Mauthenticatel
. ¢ 1 <o rofileCl BWHwUser() <<Interface>>
CREC) — ‘aser WEICIEeR(BHwUser() FavoriteChannels
WyetPreferenc es|() uthenticate() B ddUser() (o0 PElERREEE) <<Interface>>
®yrantPermission() ByetName() Wy etCurrentUser() PreferredLanguage
iS50 g 1
#revokePermission() :ZetP‘r:ferehce‘s() e references () addChannel) (from preferences)
‘rank :rmls.sm.n() W et UserList) Wy etC hannelList() el
ewkePermission() s\ alidUser() #is Favorite () ‘Be Language()
W aveUser() MWremoveChannel() etlanguage()
‘ %5 etCurrentUser()
‘ -userPrefs
v [

L

<<Interface>>
PreferenceRegistry

(from preferences)

<<Interface>>
Preference

- fr i
PreferenceRegistryClass (from preferences)
(rom preferences) — —HMaddpreterenceg [T 7 ModdpreterenceChangeLs tener(
HWgetPreference
“ﬁs!PreferenceS() MgetPreferenceName()
#emove Preferenc eChangeListener()
WremovePreference()

Figure 27 Class Diagram for User Management

The DASE API defines several interfaces and classes that comprise the Xlet's view of STB users
and their associated preferences. Figure 27]shows some of the interfaces and implementation classes
associated with User management. User accounts are stored in a Registry whose interface is defined by the
DASE API. Inthe NIST RI there exists one and only one copy of the User Registry in the JVM. The
accounts themselves are referred to as User Profiles in the DASE specification. Associated with each User
Profile is another Registry that is used to store individual User Preferences. There are four types of User
Preferences: Favorite Channels, Preferred Language, Rating Preference and Personal Data.

A Favorite Channels preference is essentially a list of preferred channels that has a name
associated with it (e.g. “Sports Channels”), and there can exist any number of them in a user’s Preference
Registry. In contrast, the latter 3 Preference types may exist only as a single instance per Preference
Registry. Preferred Language is an ordered list of language codes, sorted in order of preference. Ratings
Preference is a set of “Rating Dimension” and “Rating Value” ordered pairs. Personal Data is a set of
Attribute and Value ordered pairs that are wholly user defined.

Note that the underlying STB may or may not support multiple users with individual preferences. In
either situation at least one “user” account is assumed to exist, and is referred to as the common user or
common settings. The NIST STB simulation environment in fact provides for multiple users, however the

58

NIST DASE RI code (via the Hardware Abstraction Layer) is designed to function correctly on a STB that
only supports the single user scenario.

Specification Implementation Mapping Level
Interfaces

UserRegistry gov.nist.user.UserRegistryClass

UserProfile gov.nist.user.UserProfileClass

UserPermissions org.atsc.user.UserPermissions

FavoriteChannels gov.nist.preferences.FavoriteChannelsList

PersonalData 6
Preference Implemented by classes that implement sub-interfaces 1
PreferenceChangelListener Implemented by Xlets 1
PreferenceNames No implementation needed

PreferenceRegistry gov.nist.preferences.PreferenceRegistryClass

PreferredLanguage gov.nist.preferences.PreferredLanguageClass

RatingPreference gov.nist.preferences.RatingPreferenceClass

Classes

UserChangeCause org.atsc.user.UserChangeCause 1
UserPermission org.atsc.user.UserPermission 4
UserRegistryEvent org.atsc.user.UserRegistryEvent 1
LanguageScope org.atsc.preferences.LanguageScope 1
PreferenceChangeCause org.atsc.preferences.PreferenceChangeCause 1
PreferenceChangeEvent org.atsc.preferences.PreferenceChangeEvent 1
PreferencePermission org.atsc.preferences.PreferencePermission 4
PreferenceRegistryEvent org.atsc.preferences.PreferenceRegistryEvent 1
Exceptions

InvalidPermissionException org.atsc.user.InvalidPermissionException 1
InvalidUserException org.atsc.user.InvalidUserException 1
InvalidPreferenceException org.atsc.preferences.InvalidPreferenceException 1

Table 12 User and Preference Implementation Mapping

The implementation of User and Preferences management is spread over several packages,
namely: or g. at sc. regi stry, org. at sc. user, org. at sc. pref erences, gov. ni st. pref erences,
and gov. ni st. hwabst ract . Inthe sections that follow, the details of the implementation will be
discussed.

10.4.1 User Registry

Upon startup of the NIST STB simulation environment, an object of class
gov. ni st. hwabstract . Dat aManager is instantiated. The NIST RI maintains a single copy of the
Dat aManager object for use by all Xlets. Xlets that wish to access the User Registry do so by (as defined
in the DASE specification) using the Regi st ryFact ory. The Regi stryFact ory contains a method to
return a reference to the User, Application, Preference or Resource Registry. It should be noted that the
Resource Registry is not specified by the current version of DASE, and the Resource registry type is
currently a placeholder for future use. Note also that the Pr ef er enceRegi st ry returned by the Registry
Factory contains the Preferences belonging to the “common user” or “common settings” only.

59

The User Regi st ry object retrieved using the Regi st ryFact ory is obtained from the
Dat aManager . The first time it is retrieved (after the STB Simulation is started) the User Regi st ry object
is instantiated and populated with User and Preference records for each STB user. Thereafter, calls to the
Registry Factory to retrieve the User Regi st ry will return a reference to this same single instance.

The User Regi st ry maintains a table of User Pr of i | e objects for each STB user. Each
User Prof i | e in turn points to single Pr ef er enceRegi st ry that contains the user’s Preferences.
Changes made to a User Pr of i | e in the User Regi st ry, their associated Preference Registries, or
individual Preferences contained within those preference registries will result in immediate changes to the
User and Preference information contained in the STB. This synchronization of information between the
User Regi stry and the STB is achieved via classes defined in the HAL that are single threaded. (Note that
this isn’t currently true of the HAL classes, only of the STB ones so there may in fact be a potential for race
condition problems) Thus, all Xlets view User and Preference information in a consistent manner, because
all changes to the underlying STB information are synchronized and confined to a single copy in the STB.

In addition to the storage of User Profile information, the User Regi st r y maintains some state
information. The User Regi st r y maintains the current login state as the name of the currently logged in
user. The User Regi st ry interface provides methods that allow the currently logged in user to be retrieved
or set. In the latter case some sort of authentication procedure would normally be performed, however the
NIST RI currently provides no security mechanisms. Thus, any Xlet can reset the currently logged in user
state of the User Regi st ry at any time.

The User Regi st ry interface (as specified by DASE) provides a mechanism for asynchronous
notification of Xlets when changes occur to the User Regi st ry, namely when User Pr of i | e objects are
added or deleted. A current limitation of the NIST Rl is that notification of Xlets occurs in a single thread,
and thus Xlets that fail to respond can block other Xlets from receiving notification events.

10.4.2 User and Preferences Classes in the HAL

The HAL classes HMUser and HwPr ef er ences provide the API implementation classes with a
standardized interface to the STB User and Preference information. In order to populate the
User Regi st ry, a single HMJser is instantiated (using the no argument constructor) in order to gain access
to the list of STB usernames. Once this list has been obtained, an HMUser object is instantiated for each
STB user, using each username as an argument to the HMJser constructor.

When HMUser is instantiated, it automatically instantiates a HwPr ef er ences object, to which it
maintains a reference. The HwPr ef er ence object, when instantiated, loads all of the STB preference
information for the specified user.

In addition to providing methods to create/delete/modify user and preference information, Class
HwUser provides several utility methods that are used by the User Regi st ry class:

set Current User ()
get Current User ()
get User Li st ()
i svVal i dUser ()
get Preferences()

60

It is important to note that each instance of HwUser and HwPr ef er ences contains a copy of the
associated STB User and Preference information. Thus, only one copy of each should be instantiated per-
user otherwise inconsistencies may result.

HwPr ef er ence objects encapsulate all User Preference information stored in the STB. These
objects are only created when HwUser is instantiated, and maintain a reference back to the HwUser object
that created them. HwPr ef er ences provides methods to create/delete/modify/retrieve favorite services
lists, the preferred language list, or the set of rating ceilings stored in the STB. In addition, class
HwPr ef er ences provides several utility methods that are used by other API classes implementing User
Preferences:

exceedsRat i ngCei | i ng()

set RatingCeil i ng()

get Rati ngCei |l i ng()

set Pr ef err edLanguage
favoriteChannel Li st Exi sts()
get Favori t eChannel Li st ()
creat eFavorit eChannel Li st ()

10.4.3 Preference Registry and Preference

During creation of the User Regi st r y object, the HAL routines build a list of HwWUser (and their
associated HaPr ef er ences) objects for each STB user, along with a Pr ef er enceRegi st ry object for
each user.. Utilizing these objects, a Preference interface compliant object is then instantiated for each
individual preference, depending upon its type, added to the user’'s Pr ef er enceRegi st ry. For example, if
a given user has three Favorite Services lists at the STB level — as can be determined using
HwPr ef er ences — then three objects are created of type Favor i t eChannel sCl ass and added to the
user’s Pr ef er enceRegi stry.

10.4.3.1 User Profile

After all Pr ef er enceRegi st ry objects have been created and populated for each STB user, a
User Prof i | e object is then created for each user using the list of Pr ef er enceRegi st r y objects in the
constructor. User Pr of i | e objects are then able to return a reference to the user’s
Pr ef er enceRegi st ry upon demand. Once all User Pr of i | e objects have been instantiated for each
user, the User Regi st ry itself is then instantiated using the list of User Pr of i | e objects in the constructor.

10.4.3.2 Event Handling

Events are fired at three separate levels throughout the User and Preferences implementation (as
specified by the DASE API). Events are generated by the User Regi st ry, and also by the individual
Preference Registries, and the Preference objects themselves. Xlets can register as listeners at any of the
three levels as desired.

61

10.4.3.3 User Registry Events

User Regi st ryEvent objects are fired under these conditions:
1. A new current User has been set
2. A new User has been added

3. A User has been deleted

Note that event notification is currently implemented in a single thread, and thus there is a potential
for problems if Xlets fail to respond.

10.4.3.4 Preference Registry Events

Pr ef er enceRegi st r yEvent objects are fired under these conditions:
» A Preferences has been added

» A Preferences has been removed

Note that event notification is currently implemented in a single thread, and thus there is a potential
for problems if Xlets fail to respond

10.4.3.5 Preference Events

Currently the API specifies a class called Pr ef er enceChangeEvent for notifying Xlets of changes
to individual preferences. This class only contains information about which Preference has been affected,
but not what was done with it. In the NIST RI we have implemented the Pr ef er enceChangeEvent class
so that it can carry additional information about what was done to the individual Preference. Currently this is
only done with respect to Favori t eChannel s preferences, with two events defined: Channel Added and
Channel Removed.

62

10.4.3.6

10.4.3.7

10.4.3.8

10.4.3.9

10.5

10.5.1

Favorite Channels

Rating Preference

Preferred Language

Personal Data

Application (Xlet) Implementation

Packages javax.tv.xlet and org.atsc.application

63

<<lInterface>>
ApplicationProxy
(from application)

<<Interface>>

ServiceContentHandler

(from selection)

[MgetLocator()

[#getsenice ContentLocators()

[®suspend()

[Hresume()

s top()
<<Interface>>

(from application)

ApplicationComponentPresenterProxy

\
\

ApplicationCom ponentPres enterProxy Class

(from application)

[#addstateChangeListener()
[#clearAlarm ()
[#®getAdministrativeState()
[®getAlarmStatus ()
[#getAvailability Status ()
[#getCurrentState()
[#getCurrentStatus ()
[#getLocator()
[®getoperationalState()
[®getProceduralStatus()
.getServiceContentLocators 0
[@getStatesSupported()
[®getUsageState()
[#@hewsState()

[®resume()

[®setlock()

s top()

s uspend()

o [®getseniceContext()
-applicationProxy [®getxletContainer()
[#getxletLocator()

-applicationinformation

<<Interface>>
Xlet
from xlet)

[id estroyXiet()
[Hinitxiet ()

[®pausexiet()
s tartxlet ()

-xle

XletThread
from hwabstract)

[®XietThread()
[#appstateChanged|()
[#destroyXiet()

[®equals()

[#getAppstate()

[®getAppStatesSupported()
[#getAppStatus()
.getAppIicationInform ation()
[#getApplicationProxy()
[#getCurrentStateName()

[#getxietName()

[Hinitxiet()
[WisActive()

[®pausexiet()

[®resumeXiet()

[®run(

[@¥setCurrentState()

<<Interface>>
XletContext
(from xlet)

[#getxietProperty ()
[Hnotify Destroyed()
[®notifyP aused()

e sumeRequest()

<<Interface>>
ApplicationContext

(from application)

[®getDataSeniceDescription()
[®stateChanged()

?

ApplicationContextClass
(from application)

.ApplicationContextCIass()
.getDataServiceDescription()
[®getseniceContext()
[#getxietContainer()
[MgetxietProperty()

[#notify Destroyed()
[®notifyPaused()
[#resumeRequest()
[#stateChanged()

[®tostring()

ApplicationinformationClass
(from application)

Figure 28 Xlet/Application Implementation

.Appli cationIinformationClass()
[#getLocator()
[#getRequiredLevel()
[#getRequiredP rofile()
[EgetTitle()

[#getversion(
[#getxietName()
[#getxietstate()

[#ostring()

XletManager
(from hwabstract)

Specification Implementation Mapping Level
Interfaces
Xlet Implemented by the Xlet. Supported by

gov.nist.hwabstract.XletManager, and
gov.nist.hwabstract.XletThread

64

XletContext gov.nist.application.ApplicationContextClass
ApplicationComponentPresenterProxy | gov.nist.application.
ApplicationComponentPresenterProxyClass
ApplicationProxy gov.nist.application.
ApplicationComponentPresenterProxyClass
ApplicationContext gov.nist.application.ApplicationContextClass
ApplicationIinformation gov.nist.application.ApplicationinformationClass
Classes
XletStateChangeException javax.tv.xlet. XletStateChangedException
Application*Exception org.atsc.application.Application*Exception
Application*Cause org.atsc.application.Application*Cause

Table 13 Xlet/Application Implementation Mapping

In the DASE view, an Xlet is a DASE Application. Package or g. at sc. appl i cati on provides
DASE-specific extensions to the Xlet mechanism. For example, interface
org. atsc. Appl i cati onCont ext extends the JavaTV interface j avax. tv. x| et. Xl et Cont ent ext
in order to allow for DASE state information to be applied to a Xlet. Figure 28]shows the class diagram for
Xlet and DASE Application interfaces and the associated implementation classes. Management of Xlets is
discussed in Section Where control of the Xlet via the XI et Thr ead object is described.

The class diagram shows the relationships between the DASE interfaces and the implementation
classes. The implementation classes Appl i cat i onConponent Present er ProxyCd ass and
Appl i cati onCont ext O ass rely onthe Xl et Thr ead class to maintain information associated with the
Xlet, such as the Xlet's state and Locator. The XI et Thr ead class was described in Section §.6.2.2] An
object of this class is executed in it's own thread and calls the Xlet's methods i ni t Xl et (),
start Xl et (), pauseXlet(), and destroyXl et (). The Xlet can communicate to the Application
registry via the Xl et Cont ext object, which in a DASE system is an Appl i cati onCont ext object. The
implementation class, Appl i cati onCont ext Cl ass then communicates the request back to the
Application Registry object, which in the DASE implementation is the Xl et Manager .

When the XI et Manager loads an Xlet, an Xl et Thr ead object is created. The constructor of this
class creates the Appl i cat i onConponent ent Present er ProxyCl ass,
Appl i cationl nfornationCl ass and Appl i cati onCont ext Cl ass objects. Therefore, there are
single instances of these objects associated with the Xlet. These classes implement their respective DASE
interfaces as can be seen in the class diagram. The Xl et Thr ead class also creates the Xl et Locat or
object.

Need text and diagrams here to describe how Xlets are managed
within the Service/Data Service contexts.

10.6 Data Broadcast API

10.6.1 Introduction

The or g. at sc. dat a package provides APIs to access the Service Definition Framework (SDF) of
the ATSC T3/S13 Data Broadcast protocol (A/90). Two major components of the SDF are the Data Service

65

Table (DST) and the Data Event Table (DET). The purpose of the DST is to identify and describe the
components of a data service. The DST gives the type, location, and intended use of the data service. It is
important to note that the current ATSC DASE specification limits the number of concurrent data services
per virtual channel to one. The purpose of the DET is to announce data services. The APIs in this package
focus on obtaining a handle to the data service and retrieving electronic program guide information about the
data service.

10.6.2 Background

A data service is a collection of applications delivered in the DST. Data service applications can be
procedural (Java Xlet) or declarative (XHTML page) applications. Associated with the data service
applications are resources. Resources can be files (data) and streaming data (*as currently defined in the
ARM, later this will be expanded, see table XXX in A/90). The data files are accessed via data carousels
(see section [data carousel]. Figure 29]shows the relationship between virtual channels, data services, data
service applications, and resources.

tl t2 t4
VC-1.0 D ata Service 1 | Data Service 2 | D ata Service 3

tl
VC-2.0 D ata Service 1

tl t3
VC-2.1 D ata Service 1 No D ata Service

[
A pplication 1 A pplication 2 A pplication 3

Resource 1

Resource 2

Resource 3

Figure 29 Data Service Overview

The resources associated with a data service application can be files, XXX, or XXX. Resources are
accessed in the DST by tap loops. A tap id is used by receiver software to reference a resource. A resource
location can be local or remote. A local resource indicates that it is in the current VCT. A remote resource
may be a resource on the Internet, on the same transport stream but different VC, or on a different VC in a
different transport stream.

The Data Broadcast APIs serves two main functions: access to the data service and announcement
of the data services. Section covers the announcement of data services and section {0.6.6 focuses
on obtaining information about the data services.

10.6.3 Data Service Announcement

Data service announcement allows an Xlet to discover EPG type information about the data
services available in Service objects. This information can be contained in either the EIT or DET. If the data
service is a stand-alone data service, the announcement is made in the DET. If the data service is a data-
enhanced A/V channel, then there are optional ways to announce the data service. One option is to jointly
announce the A/V and data service in the EIT. A second option is to announce the A/V in the EIT and

66

separately announce the data service in the DET. Figure X depicts the various scenarios for the
announcement of data services. Given these options the implementation needs to take this into account.

An Xlet can obtain data service announcement information in the following way. The Service object
obtains a Data Service Details object, which contains a method to access a Data Schedule for the Service.
The Data Schedule contains methods to obtain information about the current and future data events. The
Data Event object contains the elementary data, such as the start and end time of the data service. Figure X
shows the UML diagram for the important interfaces and classes for the data service announcement APIs.

As mentioned the elementary component in data service announcement is the Data Event. Data
Events are supported in the HAL layer by two classes, namely the DataEventTable and the HALDataEvent.
The DataEventTable is the conglomorence of all DETSs for all VCs in the broadcast streams. This class
contains methods to access the entire table or to select HALDataEvents for a given VC, or an individual
HALDataEvent. The HALDataEvent represents an instance of the ATSC PSIP defined DET. Access to the
HAL DataEventTable is via source and data ids. ffable 14 depicts where the implementation retrieves
information for satisfying a Data Event object.

Method HAL Object MPEG/PSIP Table/Attribute
getStartTime() HALDataEvent DET/start_time
getEndTime() derived None

getDuration() HALDataEvent DET/length_in_seconds
getEventName() HALDataEvent DET /title_text
retrieveDescription() ETT

getRating()

getChannel()

Table 14 Data Event Implemetation to Transport Mapping

10.6.4 Data Broadcast APl Implementation Mappings

Specification Implementation Mapping Level
Interfaces

Compatibility gov.nist.data.CompatibilityClass

DataEvent gov.nist.data.DataEventClass

DataEventDescription

DataSchedule

gov.nist.data.DataScheduleClass, RetrieveDataEvent,
RetrieveFutureDataEvent, = RetrieveFutureDataEvents,
RetrieveNextDataEvent, RetrievePresentDataEvent,
RetrieveDataServiceDescription

DataServiceApplication

gov.nist.data.DataServiceApplicationClass

DataServiceDescription

gov.nist.data.DataServiceDescriptionClass

DataServiceDetails

gov.nist.data.DataServiceDetailsClass

Classes

DataServiceChangeEvent

gov.nist.data.DataServiceChangeEvent

Table 15 Data Broadcast Implementation Mapping

Notes from [Table 15

» Inthe ATSC DASE specification, the DataServiceDetails interface extends the JavaTv

ServiceDetails interface. It may not always be the case that a Service includes Data Broadcast

67

related information. Therefore, the Xlet may choose to retrieve either of these two ServiceDetalil
objects. In the NIST implementation, DataServiceDetailsClass extends ServiceDetailsClass (see
gov.nist.service.navigation for more details) and implements DataServiceDetails.

» The implementation of DataSchedule relies on a number of asynchronous helper classes, that are
used to gather a collection of DataEvents. These classes are identified by the prefix Retrieve. See
section X.X on asynchronous data retrieval for more information.

10.6.5 Issues and Notes

Compatibility: The compatibility descriptor may be used to specify data receiver hardware and/or
software requirements for proper acquisition and referencing of a data service. The
org.atsc.data.Compatibilty interface allows access to this information. The descriptor is present in A/90
Table 12.3. The details of the descriptor are shown in Table 6.1 (DSM-CC Compatibility Descriptor). The
interface gives access to the raw content of the descriptor only, the specific fields are not exposed with API
method calls. Table 12.3 has a Compatibility Descriptor for the Data Service Application. This is a DSM-CC
Compatibility Descriptor in Table 6.1. This table then has a loop of the actual Compatibility Descriptor
information.

Questions/Comments:

1. Why doesn't the Compatibility interface expose the fields of the A/90 compatibility descriptor? The
API wants just the raw bytes to be returned. Where is this?

Resources for a Data Service Application: Not really sure about this. Resources for a Data Service
Application are signaled through the entryPoint, classPath, and Decoder subdriptors (which are part of the
Application Descriptor). EntryPoint identifies data resources to be auto-launched in order to start the
application. ClassPath identifies data resources to go in the ClassPath of a Java Application. Decoder
identifies a resource as a special (Java) decoder.

68

<<Interface>>

(from data)

DataServiceDetails

<<Interface>>
DataSchedule
(from data)

<<Interface>>
DataEvent
(from data)

#WyetDataSchedule()
WhasDataService()

WetrieveDataServiceDescription()

A

#WaddListener()
WremoelListener()
WretrieveEvent()
WretrieveFutureEvent()
WretrieveFutureEvents()
W etrie veN ext Event ()
Wretrie vePres entE ve nt()

#getChannel()
#yetDuration()

g etE ndTime()
#yetEventName()
#yetRating ()
HoetStartTime()
#etrieveDescription()

HalDataEvent
(from hwabstract)

L

DataServiceDetailsClass \‘
(from data) X ‘
|
‘ |
‘\
~ ‘ \
AN | DataEventClass
AN | (from data)
|
RetrieveFutureD ataEvent ~ |
(from data) N |
~ |
WRetrieveFutureDataEvent() = . = \ -
Wrun() — __| DataScheduleClass
(from data)
- — RetrieveDataEvent
Retrieve Nex tD ataEvent L — / B (from data)
(from data) - - | AN
- / R
) etrieveDataEvent()
MWRetrieveNextDataE vent() - /
s run()
Wrun() _ /, N
‘ AN
id Y X\
RetrievePresentDataEvent

#Ha D ataE vent ()
#yetDatald ()
#yetDescriptors()
#yetE TM Location ()
#WyetE ndTime()
FyetEndTim eAsDate()
#getlengthInS econds()
#getS ourceld()
HoetStartTime()
#getStart Tim eAsDate()
W etTitleText()

DataEventTable

(from hwabstract)

WD ataEventTable()
#WyetDataEvent()
#getDataEvents()

WyetDataEvents()

(from data)

RetrieveDataServiceDescription

(from data)

RetrieveFutureDataEvents
(from data)

WRetrievePresentDataE vent()

Wrun()

Hrun()

#WRetrieveDataServiceDescription()

#WRetrieveFutureDataE vents()
#un ()

Figure 30 Data Service Announcement

10.6.6 Data Service Access

Data Service access allows an Xlet to gather information about a particular data service. This
information is obtained in the DST. From the API point of view the Xlet accesses this information by using its
context (org.atsc.application.ApplicationContext) to retrieve a DataServiceDescription object. The

DataServiceDescription object abstracts the information of an instance of a DST. The

DataServiceApplication object represents an instance of a data service application. Figure 31 khows the

UML diagram for the important interfaces and classes for the data service access APIs.

The API implementation relies on HAL classes for identifying data services. The HAL
DataServicelList is a collection of all the data services (instances of the DST) across all transport streams.
The link to this into this list is made with the program number attribute in the virtual channel.

DataServiceDescription (A/90 DST table 12.2, data_service_table_bytes, 12.3)

| Attribute

| HAL

| Transport

69

Application application loop in A/90 Table 12.3
Title title descriptor
Locator ???
PrivateData raw private data loop in A/90 Table 12.3
10.6.6.1
10.6.6.1.1 DataServiceApplication
Attribute HAL Transport
Applicationld DBDaseApplicationContext 12.3/App Loop/app_id_byte (app_id_byte

shall be set to a lid: string value to globally
and uniquely identify the application).
app_id_byte loop contain a number of
bytes representing a String URI. Follow
appldUri in DBDaseApplicationContent

Compatibilities

Title

PrivateData DBApplicationContent 12.3/Application Loop/app_data_byte

ResourceLocator

ResourceNames

Table 16 Data Service Application Implementation to Transport Mapping
10.6.6.1.2 Accessing the Data Services from the HAL

1. Access the HAL DataManager to retrieve the DataServiceList. The DataServiceList contains a list of all
available Data Service Tables in the A/90 sense. For a given Virtual Channel, a Data Service is retrieve
by calling the getDataServices() method. The link is made with the programNumber. This method
returns an array of Data Services for this Virtual Channel. The first element contains the Data Service.
Caution, future versions of the DASE specification may allow more than one Data Service per Virtual
Channel.

2. Accessing the title for the Data Service. The title is accessed in the titleDescriptor, which is a DASE
specific descriptor defined in the ARM document. The descriptor can be present as a descriptor in the
service info descriptor loop in the Data ServiceTable Byte Structure (A/90 Table 12.3). The API
implementation accesses this Descriptor data through the DataService and obtains a Descriptor List.
This list is search for the present of the title descriptor. Future: Maybe write a general procedure for
HAL descriptors.

70

<<Interface>>
DataServiceDescription
(from data)

[#addListener()
[MgetApplication()
[#getApplication()
[#getApplications ()
[#getPrivateData()
.getResourceLocator()

[BgetTitle()

[®removeListener()

DataServiceList
(from hwabstract)

[#DatasenvicelList()
[#getDataSenices()
[#getDataSenices()

DataService

(from hwabstract)

&

|
|

[®Datasenvice()
[#getApplication()
[#getApplications ()
[#getPrivateData()
[#getProgramNumber()
[MgetsdiProtocolVersion()
[#getsenicelnfo()

DataServiceDescriptionClass

(from data)

/

DBApplicationContent
(from hwabstract)

[g¥oB ApplicationContent()

[®equals()
[#getAppld(

[#getA ppldDescription()
[®getProgramNumber()
[®getTsid()
[#hashCode()

DBDaseApplicationContent
(from hwabstract)

[Jclasss$()

BB DaseApplicationContent()
.DBDaseA pplicationContent()

[®getApplduri()
[#getClassid()

<<Interface>>
Com patibility
(from data)

[#getContent()

<<Interface>>
DataS erviceApplication
(from data)

[#getClassPath()
[#getContentType()
[#getEntryClasses()
[HgetLevel()
[WgetProfile()
[®getTaskPriority ()
[#getTaskScope()

[HgetTitle()

Com patibilityClas s
(from data)

[#compatibility Class ()
[#getContent()

[#getApplicationID()
[#getCompatibilities ()
[#getPrivateData()
.getResourceLocator()
.getResourceLocators()
[#getResourceNames ()

[EgetTitle()

e

DataServiceApplicationClass

(from data)

Figure 31 Data Service Access

10.7

System and TV Graphics API

71

Receiver
from system STBSimManager
(om gEEm) DataManager (rom managerg)
(from hwabstract)
[®Receiver() —— — > -
#addS tateC hangel istener _ - getSTB States()
MWclearAlarm() ¢ ° lloetReceiverinb(WgetDtvDisplay()
WgetAdministrativeState() / \\
MWgetAlarm Status() / |
Mg etAvailability Status () ! \ \
#MgetCurrentState() / \ \
MWgetCurrentStatus() / \ /
#Wgetinstance() / \\ /
MWgetOperationalState() / \ /
MgetProceduralStatus () | /
WgetStatesSupported() / \\ / \\
MgetUsageState() | \
[E¥notify Listeners() / \ / &
#WremoveStateChangelListener() / \\ STBStates
Wsetlock(\ (from datatypes)
\/ \ B POWEROFF : byte
Y | /S POWERON : byte
Receiverinfo | / 4S STANDBY : byte
(fom hwa bsract) \\ / LiPowerState : byte
wiStatesSupported : short \ s SHIFTTUNERO : int
wStatusesSupported : short \ / s SHIFTTUNERL : int
TVContainer wiCurrentState @ int \\ / S SHIFTTUNER2 : int
(from graphics) wiCurrentStatus : int \
TV Container()

,¢$ SHIFTTUNERS3 : int
\ / > TUNERNOTPRESENT : byte
\ / &% TUNERINUSE : byte
WgetRootContainer() \ ¢$ TUNERNOTINUSE : byte
\\) wiTunerState : int
dtvDisplay | /theDtvD|spIay
/
/

L/
Vv

N2

Dt\Dis play
Container Window Frame
(from awt)

(from managers)
(from awt)

(from awt)

Wadd(
®addNotify ()
Wpaint ()

Figure 32 System API Implementation

The or g. at sc. syst em Recei ver class is implemented to receive the status of the receiver from
the hardware abstraction layer. The HAL then receives the status from the underlying set-top box
implementation. In the NIST RI, the simulation provides this information as shown in the class diagram in

The HAL Dat aManager class maps the simulation states from the STBSat es class into states
and status needed by the or g. at sc. Recei ver class.

Classes Dt vDi spl ay and STBSt at es are part of the STB simulation. The

j avax. tv. graphi cs. TVCont ai ner class also is implemented to receive its information from the HAL.
The STB simulation provides management of a DTV display by allocating an object that implements the
j ava. awt . Cont ai ner

interface that is needed by TVCont ai ner . The diagram shows that class
Dt vDi spl ay does implement the Cont ai ner interface by implementing the sub-interface Fr ane.

10.8 The Networking API

72

10.9

Figure 33 Registry Implementation

registry implementations are described in the appropriate sections. The Application Registry is described in

Section P.6.2.1] The User Registry is described in Section [[0.4.13nd the Preference Registry is described in
10.4.3

Section

10.10

org.atsc.dom htnl, org. atsc. dom | egacy and or g. at sc. dom vi ews. The classes and interfaces

The Registry API

RegistryFactory

(from registry)

#@RegistriyFactory()
B etRegistry()

<<Interface>>
ApplicationRegistry
(from application)

.JeregisterAppIication()
-getApplicationlnform ation()
-getApplicationlnform ation()
[BoetApplicationProxies ()
[®getApplicationProxy()
[®egisterApplication()

[BstartApplication()

[

\

<<Interface>>
Registry
(from registry)

[@addRegistryListener()
[BoetRegistry Type()
[®remowveRegistryListener()

<<Interface>>
UserRegistry

(from user)

[BcreateUser()
[BdeleteUser()
[®getCurrentUser()
[WgetUser()
[BgetUserNames()
[@setCurrentUser()

XletManager
@from hwabstract)

UserRegistryClass

(from user)

<<Interface>>
PreferenceRegistry
(from preferences)

[®addpPreference()
[®yetPreference()
[MistPreferences()
®emovePreference()

B

PreferenceRegistryClass
(from preferences)

[®addRegistryListener()
[BoetRegistry Type()
.em oveRegistryListener()
.JeregisterAppIication()
‘etApplicationlnform ation()
-getApplicationlnform ation()
[MgetApplicationProxies ()
[BoetApplicationProxy()
[®egisterApplication()

[EstartApplication()

[BUserRegistryClass()
[®addRegistryListener()
[BcreateUser()
[WdeleteUser()
[BgetcurrentUser()
[BgetRegistry Type()
[WgetUser()
[BgetUserNames()

.em oveRegistryListener()

[setcurrentUser()

-3referenceRegistryCIass()
[®addPreference()
[®addRegistryListener()
[BigetPreference()
ByetRegistry Type()
[MistPreferences()
®emovePreference()
.em oveRegistryListener()

Several registries need to be supported within a DASE environment. The details of the various

The Document Object Model (DOM) API

The Document Object Model (DOM) API is used to allow Xlets to interact with and control
declarative portions of an application. This API is specified in packages or g. at sc. dom

73

in these packages are based on classes and interfaces defined in package or g. w3c. domand
org.w3c.dom htm .

These ATSC classes and interfaces are not currently implemented in the NIST RI. However, files do
exist for the interfaces and classes in the source tree, but are not compiled as part of the current build
system.

10.11 The Trigger API
The Trigger API is defined in packages or g. at sc. tri gger . This API is not currently implemented
in the NIST RI although stub code does exist in the source tree.

10.12 HAVi Ul

10.12.1 Current Status

Insert content of README here.

10.12.2 Remote Control

10.12.3 Supported Devices

10.12.4 Looks

10.12.5 Widgets

10.13 DAViIC

10.13.1 Introduction

10.14 Complete Data Flow Examples
10.14.1 Introduction

The HAL objects communicate with the simulation engine via the public interface of the
STBSi mvanager class. This interface defines several methods used to access the ATSC tables as well as
the other data, such as users, preferences, etc. One such method, get ATSCDat aManager () returns an
ATSCDat aManager object which provides access to the ATSC table data.

The class ATSCDat aManager . ATSCTabl eSet Request contains a set of Boolean member
variables. The requester sets to true each member variable for which a ATSC table reference is needed. For
example, ATSCDat aManager . ATSCTabl eSet Request . vct Request ed would be set to true to indicate
that the ATSC Virtual Channel Table is requested. The class ATSCTabl eSet defines a set of public

74

member variables that are arrays of the individual ATSC table elements. For example, ATSCTabl eSet . vct
is a reference to the current ATSC virtual channel table. A NULL reference indicates that the table is not
currently available, or wasn't requested. It is up to the requestor to reconcile what tables were requested
against what references are returned.

Most of the ATSC tables are treated as a synchronized set by the ATSCDat aManager . The System
Time Table (STT) is one exception, because it is independent of the other ATSC tables. The Master Guide
Table (MGT), Virtual Channel Table (VCT), Event Information Table (EIT), Extended Text Table (ETT) and
Rating Region Table (RRT) are all updated as a complete set. Therefore, when the HAL requests table data,
all of the listed tables will be synchronized by the call to ATSCDat aManager . get ATSCTabl es() . In other
words, the tables returned all belong to the same set. Future calls to get ATSCTabl es() may return newer
versions of the tables than a previous call.

The simulation handles multiple input streams by providing multiple sets of tables to the hardware
abstraction. The tables are not merged into a single database. The hardware abstraction is responsible for
merging all of the data into a single view based on the needs of the DASE API.

Noatification of changes to the data is accomplished by using the STB Change events. The client of
the STB simulation can register with the STBSi nivanager . addSTBChangeLi st ener () method, passing in
an object implementing the STBChangelLi st ener interface. When changes to the data are made by the
table managers, the STBSi nmvanager object will notify all registered listeners by calling method
STBChangeli st ener. STBChange() with an STBChangeEvent object. Method
STBChangeEvent . get STBChangel nf o() returns a STBChangel nf o object which indicates which data
items have changed.

The HAL objects obtain a reference to the simulation manager object by calling a native function.
This call is needed because native process STB_nai n creates the simulation manager object. After
obtaining a reference to the simulation manager, all future access to the simulation database is done via the
simulation manager. The reason for this is to maintain the synchroneity between all of the ATSC tables.

When the DASE application is executed, it first creates a factory object. The purpose of the Factory
is to isolate the application from the specifics of the APl implementation (such as class names). A DASE
application uses the factory object as a starting point for communication with the DASE API. Factory classes
are specified in the DASE API document.

The factory class returns an object in the API (SI Manager for example). This object obtains a
reference to the HAL data manager by calling method get Hwivanager () in class
gov. ni st. hwabstract . STBEnvi r onnent . This object encapsulates the access to the existing data
manager object and enhances portability of the API.

75

10.14.2 Service Information Example

SIManager

(from navigation)

s iManager()

<<Interface>> [#createSeniceCollection()
Xlet [#getinstance()
(from xlet) [#getPreferredLanguage()

[#getRratingDimension()

[#EdestroyXlet() [#getsenvice()

-initXIet() -getSupponedDimensions()

[#pauseXiet() [#getTransports()

[Hstartxiet() [#registerinterest()
-retrieveProgram Event()

[#retrieveSIElement()
[#retrieveSenviceDetails()
[#setPreferredLanguage()

STBSimManager

STBEnvironment (from managers)
(from hwabstract)
SIManagerClass [Mladds TBChangeListener()
f igati
-STBEnvironm ent() (from navigation) .getATSCDataManagero
[etHwAbstractManager()
[#g etHw Manager()
ATSCDataManager
(from managers)
[#igetATSCTables()
[MgetAlIATSCTables()
VirtualChannelTable ATSCVirtualChannelTableManager
(from hwabstract) (from managers)
DataManager
(fom hwab sra ct) [@virtualChannelTable() B¥oetCurentChannelList()
[BgetvirtualChannel() F¥ogetCurrentDescriptorList()
[®getvirtualChannelTable() [®getvirtualChannel() F¥addChannel()
[MgetvirtualChannels() E¥addDescriptor()

Figure 34 Class Diagram for Service Information Retrieval

shows the UML class diagram for the System Information (SI) Manager to Simulation
interaction. This diagram illustrates the management of the ATSC virtual channel data, and the retrieval of
the data by the DASE application.

76

: Xlet : SIManager - 2 : DataManager A, H
SIManagerClass | | STBEnvironment ATSCDataManager | | ATSCVirtualChannelTableManager

‘ getinstance() ‘ ‘

getHwManager() ‘

|
|
S |
|
|

<<create>>

getVirtualChannelTable()
|

createServiceCollection()

getATSCTables(

| |
| |
| |
| |
| |
) | |
L getCurrentChannelList() ‘
\ |
| |
| |
| |

Figure 35 DASE Service Retrieval

The DASE application first calls static method SI Manager . get | nst ance() that returns a
reference to an object of class SI Manager Cl ass. This reference is a SI Manager , the abstract super class
of SI Manager C ass. SI Manager is defined in the DASE API, and SI Manager Cl ass implements the
SI Manager methods.

The S| Manager C ass object makes a call to STBEnvi r onnment . get Hwivanager to obtain a
reference to the HAL data manager. The constructor of STBEnvi r onnent calls native method
get HwAbst r act Manager () (not shown in the diagram) to retrieve a reference to the hardware abstraction
data manager from STB_nai n which created the data manager object.

At this point, the DASE application can call the methods of SI Manager to retrieve information. In
Figure 35|the application (Xlet) is calling SI Manager . cr eat eSer vi ceCol | ect i on() to obtain a
collection of Services.

The SI manager then calls the HAL Dat aManager . get Vi r t ual Channel Tabl e() to retrieve the
Virtual Channel table. The Dat aManager calls simulation object ATSCDat aManager . get ATSCTabl es()
to retrieve the current versions of the data tables. This call results in a call to
ATSCVi r t ual Channel Tabl eManager . get Curr ent Channel Li st () to retrieve the virtual channels.

The S| Manager C ass object registers with the STBSi mvanager as an STBChangelLi st ener
in order to receive natification of updates to the ATSC tables. When a new set of tables arrives, the new
table data is copied in to the respective manager in a synchronized manner and an STBChangel nf o object
is sent to all registered listeners.

77

11.

SECURITY

78

12. JAVA RUNTIME ENVIRONMENT EXTENSIONS

The Java Runtime Environment (JRE) extensions implement added functionality to several
j ava. i o classes. However, because changes were made to some Java source code that is part of the Sun
Java Development Kit, these changed files are not delivered as part of the NIST RI. This appendix will
describe the changes needed, however.

The following classes have been modified in order to provide the capability to read from Carousel
files:

java.io. Fil eReader
java.io. FilelnputStream
java.io. RandonAccessFil e

A new class, Car ousel Fi | eConnecti on has been added to the j ava. i o package. This is a
static class that manages a database of Fi | eDescri pt or s for Carousel Files. It really is the Carousel File
System: all opened Carousel Files are registered in it. Finally, a new ‘C’ library (with filename j r eX) was
created to access the native implementation of some j ava. i o functions.

The general idea was to implement in Java a branched treatment of j ava. i o functions to replace
the previously native implementation. In the case of a regular file, we call the JRE native implementation
through the j r eXlibrary; in the case of a carousel file, the code is present in the function itself. Here is an
example for the r ead() function of j ava. i 0. Fi | el nput St ream

The r ead() method was replaced with:
public int read() {

if(filelsCarouselFile) {
/1 FilelnputStreaminstanti ated
/1 around a carousel file.
/1 Java inpl enentation

} else {
/1 FilelnputStreaminstanti ated
/1 around a regular file
/1 native inplementation
return readBridge();

}

/* This new native function allows

* to go around the name conflict

* and access old native java.io inplenmentation.
* readBridge is inplemented by jreX c.

*/

public native int readBridge();

With the corresponding implementation in j reX. c:
/ *

79

* (ass: java_io_FilelnputStream

* Met hod: readBri dge
* Signature: ()I
*/

JNIEXPORT jint JNI CALL Java_java_i o_Fil el nput Stream readBri dge
(JNIEnv * env, jobject thisObj) {
return Java_java_io_FilelnputStreamread(env, thisQj);

The same scheme was applied to all functions.

80

13. APPLICATIONS

This may become a separate document..

13.1 A Prototypical Xlet

This section shows an example Xlet where the minimal functionality is implemented. Such
functionality includes implementing the Xlet interface, notifying the Application Registry of state changes via
the Appl i cat i onCont ext object, and cleanly exiting the runtime environment.

To be continued....

13.2 The Electronic Program Guide Xlet

One of the targeted applications for the DASE environment is a downloadable Electronic Program
Guide (EPG). An EPG provides viewer information about current and future programming and resembles the
TV Guide page in a newspaper (Figure 36). This information can be displayed as a simple overview of the
programming or as detailed descriptions. An EPG uses data from the Service Information (Sl) database. The
Sl database is a collection of tables describing current and future programming and is made up of PSIP
tables described earlier. The Service package within the DASE API contains functionality for service
(channel) navigation and selection.

| =-i AWTapp = EII
Electronic Program Guide
2:18 PM 2:00 PM | 2:30 PM | 3:00PM | 3:30 PM | 4:00PM | <4:30 PM
2.1 TNT Being There (1979) %%% (PQG)
2.2 EDAC Educational Access
4.7 NIST-TV |Bostorn C'om| Shampoo (1975) %% (R) | Bayvwaitch
£.2 NIST-IN TV Guide
4.3 NIST-S Days of Our Lives Passions Rosie O’Donnell
5.1 FOX Jenny Jones Donny & Marie The Magic |Power Rang
6.1 ESPN Awnito Racing College Track and Field
b nobody XD ~ | Apply | Exit

Figure 36 Electronic Program Guide

Figure 37]gives a sequence interaction diagram for an EPG. It gives an overview of how an
application would use the API to obtain S| database information for a program guide. The DASE application
first gets an instance of the SIManager. The SIManager is the access point into the Sl database. Once
access to the Sl database is established, one approach to building an EPG is to get a list of all available
Services. This can be accomplished with the createServiceCollection() method. If called with no filtering
criterion, this method returns a list of all known Services. The list can be sorted and Services can be
retrieved in order. Next the DASE application would extract the Name (e.g., PBS) and the ServiceNumber
(i.e., the channel number) for each Service in the ServiceCollection. This data is shown in the left-most
column of the example EPG illustrated in Next the application needs to obtain the program events
for each Service. This is accomplished by getting a ServiceDetails objects for every Service by using the
retrieveDetails() method. The ServiceDetails object contains a method to extract the ProgramSchedule for
the Service. The ProgramSchedule contains the list of ProgramEvents. The retrieveCurrentEvent() method
can be used to get the ProgramEvent that is currently showing on that service. ProgramEvent information
includes the name of the program, the starting and ending times, and the program rating. An extended

81

description of the ProgramEvent details can also be retrieved. This process of retrieving ProgramEvents
would be continued with the method retrieveNextEvent(). Also, the ServiceCollection would be looped
through for subsequent Services by using the getNext() method call of ServiceCollection.

DASE theSIManager: aCollection: oneService: theDetails: theSchedule: currentProgram:
f:i'i(EPG) SIManager ServiceCollection Service ServiceDetails ProgramSchedule ProgramEvent
P getlnstance()
l createServiceCollection()
l sortByName()
toBeginning()
getCurrent()
getName()
getServiceNumber()
retrieveDetails()
‘ getProgramSchedule()
retrieveCurrentEvent() >
getEventname() 4’
getStartTime() »
getEndTime() :

Figure 37 EPG Sequence Interaction Diagram

Figure 3g]illustrates how the objects at the APl implementation level obtain data from the STB
environment. The example shows a slice of the data gathering process when retrieving ProgramEvents.
Each ProgramSchedule object has an associated HAL virtual channel. The ProgramSchedule obtains a
reference to the HAL DataManager and uses it to get a reference to the HAL EIT. A list of HAL Events is
then obtained by gathering all events for the associated virtual channel. These events are used to create
API level ProgramEvents. The current event is found by using the time of day on the set-top box to search
the HAL event list. Once the event is found a ProgramEvent object is built by the API.

The HAL EIT obtains its data from the STB simulation ATSC EIT manager. The representation of
the EIT at the simulation level is a direct mapping of the ATSC PSIP table. The simulation receives the table
information that is extracted from the DTV bitstream and creates Java objects that are returned to the HAL.
The HAL EIT is responsible for merging data from the various simulation tables.

Figure 38 STB Environmer] STB Simulation HAL Implementation
R table P DataManager <
E manager /7 * ProgramSchedule
ATSC PSIP tables (eg.;
veT) A HAL VCT 1]
D VCT p
HAL EIT
E EIT
R aic * ProgramEvent
' HAL Event

82

13.3 The Stock Sticker Xlet

13.3.1 Introduction

The Stock Ticker Xlet presents dynamic stock quote information to a television screen in a DASE
environment (see Figure 39). The Xlet uses the Data Carousel APIs to obtain the broadcast data. The data
file is sent as data carousel modules with an associated universal resource identifier (URI). The data
contains the stock symbol, current price, delta, and time of the quote. The Xlet reads this information via the
data carousel API and displays the information to the television screen. The StockTicker Xlet demonstrates
the use of the Data Carousel, Xlet, and Locator APIs.

Price Change

47.54 +0.24
55.75 +1.50
26.25 -2.950
39.00 -1.25
46.50 +0.75

Figure 39 Stock Ticker Display

13.3.2 Components

The Stock Ticker Xlet depends on a number of Java class file components. StockTicker and
StockDataModel are the Xlet components. StockStreamer is the data source module. QuoteList is the bridge
module, where StockStreamer writes data, and StockTicker reads it. QuoteFileGen is a utility tool to create
the initial set of stock quotes. Below a summery of each component is given. The interactions between the
components are given in Note that the StockTicker, StockDataModel, and QuoteList comprise the
Xlet components. StockStreamer and QuoteFileGen are utility components in the DASE environment that
are use to stream stock quote and to build stock quote data.

StockTicker: This is the Xlet class that displays the stock ticker. It is responsible for opening and reading
from the carousel file. After successfully reading stock quote data it displays the stock ticker to the television
screen. StockTicker uses the StockDataModel to help create the stock ticker table. The StockTicker Xlet
implements the Xlet and CarouselFileListener interfaces. It receives quote updates via the
CarouselFileListener.

StockDataModel: This class provides the AbstractTableModel for the JTable swing component (hote that
HAVi components will replace the swing components in future version of the StockTicker). At this point we
assume that the swing class files are broadcast as part of the StockTicker application.

StockStreamer: This class is responsible from generating a stream of stock quotes. It creates a stream of
QuotelList objects and writes these to the data carousel (FIFO). This is a stand-alone component.

83

QuotelList: This class is an instance of the stock quote data. QuoteList contains the entire list of quotes.
QuotelList has an inner class (Quote) that represents a single stock quote. A Quote consists of a Symbol
(stock name), a Price (current value), a Delta (change since the last closing price), and the time of the quote.

QuoteFileGen: This class generates the initial set of stock symbols. The StockStreamer reads the created
file.

crestes
QuoteFileGen

StockDataM odel

reads

StockStreamer StockTicker Xlet

Figure 40 StockTicker Components

13.3.3 The StockTicker Xlet
The major tasks of the Stock Ticker are given below.
« Establish a connection to the carousel file.
» Get a LocatorFactory instance
» Create a Locator from the URI
» Transform Locator
» Create CarouselFile object
% Read the stock quote data
» Create a FilelnputStream object using the CarouselFile
» Create an ObjectinputStream using the FilelnputStream
» Read a QuoteList object from ObjectinputStream
» Obtain an array of Quotes from the QuoteList object
< Build the Stock Ticker table
» Initialize the StockDataModel
» Create the Stock Ticker table.
» Bind the Stock Ticker table to the TVContainer.

84

% Update the Stock Ticker table.

» Add Xlet to list of data carousel listeners
» Refresh data carousel cache upon receipt of data carousel update
» Read a QuoteList object from ObjectinputStream
» Update StockDataModel with new Quote data
13.3.4 Compiling (Unix)

This Xlet requires that the jreX extensions for the data carousel be compiled in. Do this by including
the --with-jrex flag during configure. In the nist_ri root level directory, use the following commands. Make
sure that the distribution you have includes the jreX extensions.

% make di stcl ean
% configure --with-jrex
% make

13.3.5 Setting up the Run Environment (Unix)

1. Enable the Data Carousel Simulation Runtime Extensions

To enable the data carousel runtime extensions the jreX.jar file must be added to the
STBSIM_CLASSPATH and must be the first file. In addition, the standard Java runtime jar file, rt.jar needs
to be the second file in the STBSIM_CLASSPATH environment variable. A sample setenv
STBSIM_CLASSPATH command is given below.

% set env STBSI M_CLASSPATH \
${HOVE}/nist_ri/simulation/runtime/jreX jar: \
fusr/javaljre/lib/rt.jar: \

${HOVE}/ ni st _ri/simulation/runtime/sth.jar: \
${HOVE}/ ni st _ri/sinmulation/runtime/dase.jar: \
${HOVE}/ ni st _ri/simulation/runtinme/hwabstract.jar: \
${HOVE}/ ni st _ri/simulation/runtime/devkit.jar: \
lusr/javaljre/libljnf.jar

2. Enable the Data Carousel Dynamic Library Path Runtime Extensions
To enable the JRE extensions the STBSIM_LIBRARY environment variable must also be set to

contain the location of the libjreX.so library file and the location of the standard Java runtime libraries. Below
is an example of how to set the STBSIM_LIBRARYPATH.

% set env STBSI M _LI BRARYPATH \
${HOVE}/ ni st _ri/simulation/runtime:/usr/javal/jre/lib/i386

13.3.6 Running (Unix)
Note: all cd commands are relative from the NIST Prototype Implementation root directory (nist_ri).

1. Create quote list file

% java -cl asspath $CLASSPATH applications. xl ets. st ock. Quot eFi | eGen CE 45. 32
+0.50 WMI 55.75 +1.50 AVD 26.65 -2.25 TXN 39.00 -1.25 EBAY 46.34 +0.75

Note: This will create a file named quotelist. Use this file as input to StockStreamer.

2. Start DtvSimulator and start RunXlet utility

85

% cd bin
% ./STB main -s -x -f /tnp/stockticker.fifo
> tool s/sinmulation/ RunXl et

Note: Go to step 3, then come back to the DtvSimulator program in step 4.

3. Start StockStreamer (in another xterm)

% j ava -cl asspath $CLASSPATH applications. x| ets. stock. St ockStreanmer -
quotelist -o /tnp/stockticker.fifo -pat -t 2000

Notes: Make sure the CLASSPATH includes the devkit.jar and stb.jar files. The “-i quotelist” indicates
the file to read the initial quotes from. Make sure quotelist is accessible to the StockStreamer
application. “-pat” indicates to send in a psip program association table. This table will signify a lid, in this
case, lid://nist.gov/data/stockdata. The StockTicker Xlet will use this lid to obtain a locator. The “-t 2000”
indicates an interval (in milliseconds) to send the stock quotes. In this case, it is 2 seconds. “-0
/tmp/stockticker.fifo” indicates the fifo set with DtvSimulator.

4. Start StockTicker Xlet (under the DtvSimulator, RunXlet program)
RunXl et > appl i cations/ x|l et s/ stock/ St ockTi cker
Notes: RunXlet tells the Application Manager to load and run the Xlet. Make sure the Xlet's class files
are located in STBSIM_CLASSPATH. Setting the STBSIM_CLASSPATH as specified above will be
sufficient since it contains devkit.jar.

5. Monitoring and Controlling the StockTicker Xlet (not a required step)
The StockTicker can be paused/restarted/destroyed through the use of the Application Control Panel.
On the simulated remote control, enable the remote control by pressing the “on” button. Then select the
“apps” to start the Application Control Panel. The StockTicker Xlet (or any Xlet) can be control and

monitored with this utility.

13.3.7 StockTicker Xlet Source Code (selected modules)

86

References

[ATSC:API] ATSC T3/S17 (DASE) API Specification
[ATSC:AB5] Advanced Television Systems Committee,
Program and System Information Protocol for Terrestrial

Broadcast and Cable, Document A/65

[ATSC:A90] Advanced Television Systems Committee,
ATSC Data Broadcast Standard, Document A/90

[UML] G. Booch, J. Rumbaugh and I. Jackson,
The Unified Modeling Language User Guide, 1999 Addison Wesley

[USER-GUIDE] NIST DASE Development Environment User’s Guide

87

14. DISCLAIMER

NOTICE OF SOFTWARE ACKNOWLEDGMENT AND REDISTRIBUTION

The software (named NDRI, for NIST/DASE API Reference Implementation) described herein is
released by the National Institute of Standards and Technology (NIST), an agency of the U.S. Department of
Commerce, Gaithersburg MD 20899, USA. The software presented here is intended to be utilized for
research purposes only and bear no warranty, either express or implied. NIST does not assume legal liability
nor responsibility for a User’s use of a NIST-derived software product or the results of such use.

Please note that within the United States, copyright protection, under Section 105 of the United
States Code, Title 17, is not available for any work of the United States Government and/or for any works
created by United States Government employees. User acknowledges that this software contains work that
was created by NIST employees and is therefore in the public domain and is not subject to copyright. The
User may use, distribute, or incorporate this code or any part of it provided the User acknowledges this via
an explicit acknowledgment of NIST-related contributions to the User’s work. User also agrees to
acknowledge, via an explicit acknowledgment, that User has made modifications or alterations to this
software before redistribution.

88

	INTRODUCTION
	DEFINITION OF TERMS
	Acronyms and Abbreviations
	Terms

	API IMPLEMENTATION MAPPINGS AND STATUS
	Status Table Guidelines
	DASE API Implementation Status

	DEVELOPMENT ENVIRONMENT
	SYSTEM DESIGN
	Introduction
	NIST DASE Development Environment Components
	Introduction
	Overview of the STB Simulation
	Hardware Abstraction Layer Overview
	DASE API Overview

	THE STB SIMULATION
	Introduction
	The Native Code Components
	The Simulation Control Program
	Program Clock Reference Manager
	Stand-alone mode
	Interface to the Stream Parser
	Interface to Clients
	Test Feeder

	The Bitstream Parser

	Java Components
	The Manager Classes
	Input Stream Parsers
	The Datatype Classes
	Other Classes

	PSIP Table Management in the Simulation
	PSIP Table Classes
	Manager Classses
	ATSCDataManager
	ATSCEventInformationTableManager
	ATSCMasterGuideTableManager
	ATSCRatingRegionTablesManager
	ATSCVirtualChannelTableManager
	ATSCExtendedTextTableManager

	Datatype Classes
	ATSCDatatype
	ATSCEventInformation
	ATSCExtendedTextMessage
	ATSCMasterGuideTableEntry
	ATSCRatingRegionTable
	ATSCVirtualChannel

	Virtual Channel Table Example

	Data Broadcast Management
	Data Broadcast Overview
	Simulation Management of Data Broadcast
	ATSCDataServiceTablesManager
	ATSCDataServiceTable
	ATSCDataEventTableManager
	ATSCDataEvent
	ATSCUserToNetworkDownloadManager
	ATSCUserToNetworkDownloadModule

	JMF
	Hardware Simulation
	MPEGDecoderManager
	PCRManagerPullSourceStream
	DataSource
	Handler
	DAVIC Controls

	REAL-TIME EMULATION
	COMMERCIAL STB
	HARDWARE ABSTRACTION LAYER
	Introduction
	STB Environment
	HAL Data Manager
	MPEG/PSIP Table Management
	Introduction
	Virtual Channels
	Data Services
	Event Information
	Rating Information
	Descriptors
	Extended Text Messages

	Data Broadcast
	Description of Data Broadcast Classes in the HAL
	CarouselManager
	CarouselModule
	DBDaseApplicationContent
	DBApplicationContentFactory
	DBApplicationContent
	DBApplicationManager

	Application Management
	Introduction
	Xlet Management Classes
	XletManager
	XletThread
	XletClassLoader
	XletClassData

	Xlet Resource Loading

	JMF Player
	Abstract Decoder
	Java Interfaces

	API IMPLEMENTATION
	Locators
	The Management API
	Service APIs
	Overview
	Asynchronous Service Information Retrieval
	Package javax.tv.service
	Package javax.tv.service.guide
	Guide UML Diagram
	Specification to Implementation Mapping
	Implementation to ATSC/MPEG Table Mapping

	Package javax.tv.service.navigation
	Overview
	Specification to Implementation Mapping

	Package javax.tv.service.selection
	Overview
	Access to the JMF Player
	Policy and Issues
	Service Selection UML Diagrams
	Specification to Implementation Mapping
	Implementation to ATSC/MPEG Table Mapping
	Notes and Issues

	Package javax.tv.service.transport
	Overview
	Specification to Implementation Mapping
	Notes and Issues

	User and Preference Management
	User Registry
	User and Preferences Classes in the HAL
	Preference Registry and Preference
	User Profile
	Event Handling
	User Registry Events
	Preference Registry Events
	Preference Events
	Favorite Channels
	Rating Preference
	Preferred Language
	Personal Data

	Application (Xlet) Implementation
	Packages javax.tv.xlet and org.atsc.application

	Data Broadcast API
	Introduction
	Background
	Data Service Announcement
	Data Broadcast API Implementation Mappings
	Issues and Notes
	Data Service Access
	
	DataServiceApplication
	Accessing the Data Services from the HAL

	System and TV Graphics API
	The Networking API
	The Registry API
	The Document Object Model (DOM) API
	The Trigger API
	HAVi UI
	Current Status
	Remote Control
	Supported Devices
	Looks
	Widgets

	DAViC
	Introduction

	Complete Data Flow Examples
	Introduction
	Service Information Example

	SECURITY
	JAVA RUNTIME ENVIRONMENT EXTENSIONS
	APPLICATIONS
	A Prototypical Xlet
	The Electronic Program Guide Xlet
	The Stock Sticker Xlet
	Introduction
	Components
	The StockTicker Xlet
	Compiling (Unix)
	Setting up the Run Environment (Unix)
	Running (Unix)
	StockTicker Xlet Source Code (selected modules)

	DISCLAIMER

